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Abstract

The focus of this research is on single platform geolocation methods where the

position of a single stationary radio frequency emitter is estimated from multiple

simulated angle and frequency of arrival measurements taken from a single moving

receiver platform. The analysis scenario considered consists of a single 6U CubeSat in

low earth orbit receiving radio frequency signals from a stationary emitter located on the

surface of the Earth. A multiple element receive antenna array and the multiple signal

classification algorithm are used to estimate the angles of arrival of an impinging signal.

The maximum likelihood estimator is used to estimate the frequency of arrival of the

received signal. Four geolocation algorithms are developed and the accuracy performance

is compared to the Cramer-Rao lower bounds through Monte Carlo simulations. Results

from a system parameter sensitivity analysis show the combined angle and frequency of

arrival geolocation maximum likelihood estimator consistently outperforms the other

three geolocation algorithms.
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SINGLE PLATFORM GEOLOCATION OF RADIO FREQUENCY EMITTERS

I. Introduction

Geolocation of Radio Frequency (RF) emitters involves estimating the position of an

emitter from the received RF signals at one or more receivers. In the case of passive

geolocation [1], only the phenomenology of the received signals (angle of arrival, time

delay, Doppler frequency shift, etc.) is used to estimate the position of the RF emitter,

rather than the emitter providing its position as a message contained in the RF signal.

Geolocation methods involving multiple coordinated RF receivers include: Angle of

Arrival (AOA) [2], time difference of arrival [3], frequency difference of arrival [1], and

direct position determination [4]. Geolocation methods using a single moving receiver

include AOA [3] and Frequency of Arrival (FOA) [5]. The focus of this thesis research is

the single moving platform geolocation methods available to estimate the position of a

single stationary RF emitter using multiple angle and frequency measurements from the

received RF signals.

1.1 Problem Statement and Research Objective

The scenario considered in this research is to geolocate a single stationary RF emitter

using the signals received by an antenna array on a single 6 Unit (6U) CubeSat [6] moving

in Low Earth Orbit (LEO). The goal of this research is to develop, implement, analyze,

and compare single platform geolocation algorithms. A simulation framework is

developed to conduct a system parameter sensitivity analysis to assess parameter impact

on the performance of the geolocation algorithms.

1



1.2 Underlying Assumptions

The following underlying assumptions apply to the scope of the research. The single

moving 6U CubeSat consists of a calibrated multiple element antenna array, phase

coherent RF receivers, and a guidance, navigation, and control subsystem to provide

position, velocity, and attitude data to a dedicated payload processor. A 6U CubeSat is

defined [6] with the exterior dimensions of 12 x 24 x 36 cm and a total mass less than

12 kg. The single terrestrial RF emitter is assumed to be stationary with no co-channel

interference from multiple emitters. The following topics are beyond the scope of this

thesis and are left as considerations for future research: implementation of specific

antenna arrays, RF emitters, and RF receivers; filtering and pre-processing of the received

RF signals; multiple emitter segregation through data association of the received RF

signals; and the effect of co-channel interference on geolocation algorithm performance.

1.3 Thesis Organization

This thesis is organized as follows: Chapter II discusses existing angle of arrival

geolocation algorithms and signal parameter estimation methods; Chapter III develops the

geolocation algorithms and simulations used in this thesis; Chapter IV reports the results

of a system parameter sensitivity analysis to assess the impact on the performance of the

various geolocation algorithms; and Chapter V presents the overall conclusions of this

research with recommendations for future work.
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II. Background

This chapter is organized as follows: Section 2.1 describes the coordinate systems and

reference frames used in this thesis; Section 2.2 details the Multiple Signal

Classification (MUSIC) angle of arrival algorithm and associated theoretical performance;

Section 2.3 summarizes two existing angle of arrival geolocation methods; Section 2.4

describes maximum likelihood estimation, Gauss-Newton iterations, and the Cramér-Rao

lower bound; Section 2.5 details the maximum likelihood parameter estimation of a

sinusoidal signal; and Section 2.6 describes a method to visualize the confidence of

estimated parameters.

2.1 Coordinate Systems and Reference Frames

The following coordinate systems and reference frames are used throughout this thesis

to define relative position and attitude geometries. The Earth Centered Earth

Fixed (ECEF) coordinate system is used for positioning in terms of 3D Cartesian

coordinates. The Geodetic coordinate system using the World Geodetic System (WGS) 84

model is used for positioning in terms of latitude, longitude, and altitude. The local ECEF

reference frame is a translated ECEF coordinate system. The East North Up (ENU)

reference frame is used to define the satellite local reference frame. The sensor reference

frame is used to define the antenna array geometry with respect to the satellite local

reference frame. The relationship between the ECEF, geodetic, and ENU coordinate

systems is shown in Figure 2.1.

The ECEF frame is a geocentric right handed 3D Cartesian coordinate system with the

origin at the center of mass of the Earth. The Xe-axis points towards the intersection of the

equator and the prime meridian (0◦ latitude 0◦ longitude), the Ze-axis points towards the

3



North

East

Up

φg

λg
Ye

Ze

Xe

Figure 2.1: Relationship between the ECEF (Xe,Ye,Ze), geodetic (ϕg, λg, hg), and ENU

coordinate systems [7].

north pole (0◦ latitude 90◦ longitude), and the Ye-axis is normal to the XeZe-plane in

accordance with the right hand rule.

The geodetic frame is an angular coordinate system which uses an ellipsoidal

approximation of the Earth geoid to define a 3D point in terms of latitude (ϕg), longitude

(λg), and altitude (hg). Latitude is the angle measured from the equatorial plane to the

point normal to the surface of the ellipsoid and ranges from −90◦ to 90◦. Longitude is the

angle measured counterclockwise from the prime meridian in the equatorial plane and

ranges from −180◦ to 180◦. Altitude is the height above the surface of the ellipsoid along

the longitude vector. The reference ellipsoid model used in this thesis is the WGS 84

ellipsoid with the key parameters listed in Table 2.1.

The local ECEF reference frame is specified by the origin located at a point p in ECEF

coordinates and is a translation of the ECEF coordinate system. The X′e, Y ′e, and Z′e axes of

4



Table 2.1: WGS 84 key parameters [8].

Semi-major axis 6378137 m

Semi-minor axis 6356752.3142 m

Eccentricity 0.0818191908426

Inverse flattening 298.257223563

the local ECEF reference frame are parallel to the Xe, Ye, and Ze axes of the ECEF frame,

respectively.

The local ENU reference frame is used as the satellite reference frame and is specified

by an origin and the vectors east, north, and up. The location of the origin is located at

point p in ECEF coordinates. The up vector (U-axis) points along the longitude vector

and is normal to the ellipsoid surface. The north vector (N-axis) points towards the north

pole (Xe-axis) and is tangent to the ellipsoid surface. The east vector (E-axis) is normal to

the UN-plane in accordance with the right hand rule. The NE-plane of the ENU frame is

at the altitude hg of p and is tangent to the surface of the ellipsoid at λg and ϕg.

The sensor reference frame is used to specify the position of an antenna array within

the local satellite ENU reference frame and consists of a right handed orthogonal set of x,

y, and z axes originating from point p. The relationship between the sensor frame and

ENU frame is dependent on the orientation of the satellite and is detailed in Section 3.2. A

summary of the reference frames used in this research is shown in Table 2.2 and the

angles are defined in the following sections.

2.2 Multiple Signal Classification with a Uniform Circular Array

The first step of the AOA geolocation process is to determine the AOA of an impinging

RF signal. The MUSIC algorithm with a Uniform Circular Array (UCA) antenna utilizes

the phase delays of an impinging Electromagnetic (EM) wavefront across the individual

5



Table 2.2: Reference frames.

Reference Frame Origin Axes Angles

ECEF Center of mass of the earth XeYeZe

Local ECEF ECEF position p X′eY
′
eZ
′
e α, ε

Local ENU ECEF position p ENU φENU , θENU

Sensor ECEF position p xyz φ, θ

antenna elements to determine the AOA. The AOA and position of the receiver platform

are used to generate a 3D Line of Bearing (LOB) in the direction of the emitter.

2.2.1 Signal Model.

Consider a general complex baseband signal s(t) of unit magnitude |s(t)| = 1 where

Re{s(t)} and Im{s(t)} are the In-phase and Quadrature-phase components, respectively.

The wireless RF transmission of s(t) is [9]

st(t) = Re
{√

σ2
t s(t)e jωct

}
(2.1)

where σ2
t is the transmitted signal power in Watts, ωc = 2π fc is the carrier frequency in

rad/s, and fc is the carrier frequency in Hz.

The signal received by an antenna after the transmitted EM wave propagates through

the atmosphere and free space is

sr(t) = Re
{√

σ2
r (t)s(t)e jωcte jωD(t)t

}
(2.2)

where σ2
r (t) is the received power and ωD(t) is the Doppler frequency shift due to the

relative velocity between the transmitter and receiver.

The received power is given as [10, 11]

σ2
r (t) =

σ2
t GtGr

LaLpLs (d(t), λc)
(2.3)
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where Gt is the gain of the transmit antenna, Gr is the gain of the receive antenna, La is the

atmospheric loss, Lp is the polarization mismatch loss, Ls (d(t), λc) is the free space

propagation loss, d(t) is the Euclidean distance (range) from the transmitter to receiver,

and λc is the wavelength of the transmitted signal. The free space propagation loss is [10]

Ls (d(t), λc) =

(
4πd(t)
λc

)2

(2.4)

where

λc =
c
fc

(2.5)

and c = 299,792,458 m/s is the speed of light in a vacuum [10].

The Doppler frequency shift is

ωD(t) =
−ḋ(t)

c
ωc (2.6)

where ḋ(t) is the time derivative of the distance (range rate) between the transmitter and

receiver. Equation (2.6) is derived from [5, 11]

ωr(t) =

(
1 −

ḋ(t)
c

)
ωc = ωc + ωD(t) (2.7)

where ωr(t) = 2π fr(t) is the frequency of the received signal in rad/s and fr(t) is the

received frequency in Hz.

The received signal after complex demodulation is [9]

sd(t) = sr(t)e− jωct =

√
σ2

r (t)s(t)e jωD(t)t (2.8)

and after sampling, with a period of Ts, becomes

sd[n] =

√
σ2

r [n]s[n]e jωD[n]n (2.9)

where n = t|t=nTs
is the discrete sample index.

Consider a planar EM wavefront impinging on a M element UCA antenna [12–16].

The antenna elements lie in the xy plane of the sensor reference frame and are uniformly

7



spaced around the circumference of a circle of radius r. As the plane wave propagates

across the UCA, it will arrive at each element at a different time as shown in Figure 2.2.

The reception time delays are observed as phase delays in the received signals. The AOA

of the wavefront is given in terms of elevation and azimuth angles, θ and φ respectively. θ

is measured down from the z axis and φ is measured counterclockwise from the x axis as

shown in Figure 2.3. The observed phase delay is a function of the array geometry (radius

and element spacing), the wavelength of the impinging signal, and the AOA. If the

receiving antenna elements are assumed to be identical and omnidirectional, the phase

delay referenced to the center of the UCA at the m-th element is given as [15]

am(θ, φ) = exp
(

j
2π
λr

r sin(θ) cos (φ − γm)
)

(2.10)

where λr = c/ fr is the wavelength of the received signal and γm = 2π (m − 1) /M is the

counterclockwise angle of the m-th element to the x axis. In order to avoid spatial aliasing,

adjacent antenna elements are required to be spaced no further apart than λr/2 [12].

x

y

m

M

1

2

ϕ

sr(t)

r
γm

Figure 2.2: Uniform circular array phase delay. A planar wavefront will arrive at each

antenna element at a different time. The time difference is observed as a phase delay in the

received signal [9].
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x

y

z

m
M

r

1 2

θ

ϕ

sr (t)

Figure 2.3: Uniform circular array geometry. M identical antenna elements lie in the xy

plane of the sensor reference frame and are evenly spaced along the circumference of

a circle of radius r. For an impinging planar wavefront, the elevation θ and azimuth φ

angles of arrival are measured down from the z axis and counterclockwise from the x axis,

respectively [16].

If it is assumed that the impinging signal is narrowband such that the propagation delay

across the antenna array is much smaller than the reciprocal of the bandwidth of the

impinging signal [9, 13], then the signal from the m-th antenna element after

demodulation and sampling is [15]

xm[n] = am(θ, φ)sd[n] + wm[n] (2.11)

where wm[n] is a zero mean complex Additive White Gaussian Noise (AWGN) random

process with covariance σ2
wI. It is commonly assumed [12, 13, 16–18] that the noise

wm[n] is spatially and temporally independent of the signal sd[n]. The power of wm[n] is

given as [10, 11]

σ2
w = κTsysW (2.12)

where κ = 1.3806504 × 10−23 J/K is the Boltzmann constant [10, 11], Tsys is the noise

temperature of the receiver system, and W is the bandwidth of interest.

9



Using compact matrix notation for the M antenna array signals with one impinging

signal present and N samples,

X = a (θ, φ) s + W (2.13)

where

X =



x1[1] x1[2] · · · x1[N]

x2[1] x2[2] · · · x2[N]
...

...
. . .

...

xM[1] xM[2] · · · xM[N]


M×N

=

[
x[1] x[2] · · · x[N]

]
M×N

(2.14)

are the M received signals as defined in (2.11) and x[n] is the received signal vector at

sample n,

a (θ, φ) =



a1(θ, φ)

a2(θ, φ)
...

aM(θ, φ)


M×1

(2.15)

is the steering vector comprised of the antenna element phase delays defined in (2.10),

s =

[
s1[1] s1[2] · · · s1[N]

]
1×N

(2.16)

is the sampled demodulated signal and,

W =



w1[1] w1[2] · · · w1[N]

w2[1] w2[2] · · · w2[N]
...

...
. . .

...

wM[1] wM[2] · · · wM[N]


M×N

(2.17)

are independent noise realizations.

The general signal model for M antenna elements, K impinging signals, and N samples

is given as [9, 19]

X = AS + W (2.18)

10



where each column of A is the steering vector of the k-th impinging signal,

A =

[
a(θ1, φ1) a(θ2, φ2) · · · a(θK , φK)

]
M×K

(2.19)

and S is the collection of K demodulated signals

S =



s1[1] s1[2] · · · s1[N]

s2[1] s2[2] · · · s2[N]
...

...
. . .

...

sK[1] sK[2] · · · sK[N]


K×N

. (2.20)

2.2.2 MUSIC Algorithm.

The MUSIC algorithm [19] utilizes the eigenstructure of the spatial covariance matrix

of the signals received by M antenna elements to determine the AOA of K impinging

signals. The M × M spatial covariance matrix is given as [9]

Rxx = E
[
XXH

]
= E

[
(AS + W) (AS + W)H

]
= AE

[
SSH

]
AH + E

[
WWH

]
. (2.21)

Since it is assumed that the noise is an uncorrelated zero mean complex AWGN process,

the noise covariance matrix is

E
[
WWH

]
= σ2

wIM×M (2.22)

and (2.21) becomes

Rxx = ARssAH + σ2
wIM×M (2.23)

where

Rss = E
[
SSH

]
(2.24)

is the K × K signal covariance matrix. In the case of zero mean uncorrelated signals,

Rss = diag
[
σ2

1, σ
2
2, · · · , σ

2
K

]
(2.25)

where σ2
1, σ

2
2, . . . , σ

2
K are the signal powers [15, 20].
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Since Rxx is a Hermitian matrix by design (Rxx = RH
xx), it has a unitary

eigendecomposition with real eigenvalues and orthonormal eigenvectors [21]. When the

number of signals is less than the number of antenna array elements (K < M) the

eigendecomposition of the spatial covariance matrix can be arranged such that [9]

Rxx = QDQH =

[
Qs Qw

]  Ds 0

0 σ2
wI


[

Qs Qw

]H

(2.26)

where Qs consists of the K eigenvectors which span the signal subspace with

corresponding eigenvalues Ds = diag
[
λ1 + σ2

w, λ2 + σ2
w, · · · , λK + σ2

w

]
and Qw consists of

the M − K eigenvectors which span the noise subspace with corresponding eigenvalues

σ2
w. The form of (2.26) comes about when the eigenvalues contained in D are arranged in

descending order.

When K < M the matrix ARssAH is singular with rank K and the relation [19]

det
(
ARssAH

)
= det

(
Rxx − σ

2
wI

)
= 0 (2.27)

indicates that σ2
w is an eigenvalue of Rxx which occurs M − K times. An eigenvector qw of

Rxx corresponding with a σ2
w eigenvalue is shown to be orthogonal to the columns of A [9]

Rxxqw =
(
ARssAH + σ2

wI
)

qw = 0 + σ2
wIqw = σ2

wqw (2.28)

and the M − K qw eigenvectors span the noise subspace defined by the columns of Qw.

There are K linearly independent eigenvectors qs with corresponding eigenvalues λs of the

matrix ARssAH which are also eigenvectors of Rxx as shown by [9]

Rxxqs =
(
ARssAH + σ2

wI
)

qs = λsqs + σ2
wIqs =

(
λs + σ2

w

)
qs (2.29)

where λs + σ2
w is the corresponding eigenvalue of Rxx. The K qs eigenvectors span the

signal subspace defined by the columns of Qs. Sorting the M eigenvalues of Rxx contained

in D in descending order (λ1 + σ2
w > · · · > λK + σ2

w > σ
2
w ≥ · · · ≥ σ

2
w),

D = diag
[
λ1 + σ2

w, · · · , λK + σ2
w, σ

2
w, · · · , σ

2
w

]
=

 Ds 0

0 σ2
wI


M×M

, (2.30)
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and arranging the corresponding K eigenvectors of Qs and M − K eigenvectors of Qw to

partition the Q matrix

Q =

[
Qs Qw

]
(2.31)

yields the eigendecomposition shown in (2.26). Since the eigenvectors contained in Q are

orthonormal, the signal subspace is orthogonal to the noise subspace (QH
s Qw = 0).

The orthogonality of the signal and noise subspaces provides a means to determine the

AOA of the impinging signals. The columns of A are the signal steering vectors which lie

in the signal subspace. Due to subspace orthogonality, aH (θ, φ) Qw = 0 when θ and φ are

the angles of an impinging signal. Since the steering vector is a function of the known

antenna array geometry, evaluation of the MUSIC spectrum [9, 19]

PMUSIC (θ, φ) =
1

aH (θ, φ) QwQH
w a (θ, φ)

(2.32)

over the range of θ and φ will yield peaks whenever θ and φ correspond to the AOA of an

impinging signal. The location of the peaks are taken as the AOA estimates of θ̂ and φ̂. In

practice, Rxx is estimated from the received signal data [9, 12, 13]

R̂xx =
1
N

N∑
n=1

x[n]xH[n] =
1
N

XXH (2.33)

and the estimate of the noise subspace Q̂w is used in (2.32) with a grid search over the

range of θ and φ. An example of the MUSIC spectrum is shown in Figure 2.4 with peaks

corresponding to the AOA of the impinging signals.

2.2.3 MUSIC Theoretical Performance.

Analytic expressions for the theoretical performance of MUSIC using a UCA have

been developed in [12, 13] from a first order Taylor series expansion of the MUSIC

spectrum in the vicinity of the true AOA. The expressions are asymptotic for a large

number of N samples and yield the error, covariance, and variances of the estimated

angles. The following derivation is adapted from [12, 13] in terms of the elevation θ and

azimuth φ angles of the impinging signals.
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Figure 2.4: Example MUSIC spectrum for a 4 element UCA with 2 impinging signals. The

peaks at (θ1, φ1) = (60◦, 120◦) and (θ2, φ2) = (25◦, 270◦) correspond to the AOAs of the

impinging signals.

The estimated angle error vector of the k-th impinging signal in the sensor reference

frame is defined as

eθφ,k =

 θ̂k − θk

φ̂k − φk

 (2.34)

and is evaluated as

eθφ,k =
[
E−1d

]∣∣∣∣
θ=θk ,φ=φk

(2.35)

where

E =

 aH
θ Q̂wQ̂H

w aθ Re
{
aH
φ Q̂wQ̂H

w aθ
}

Re
{
aH
φ Q̂wQ̂H

w aθ
}

aH
φ Q̂wQ̂H

w aφ

 (2.36)

and

d =

 −Re
{
aHQ̂wQ̂H

w aθ
}

−Re
{
aHQ̂wQ̂H

w aφ
}
 . (2.37)

14



The terms aθ and aφ are the partial derivatives of a with respect to θ and φ,

aθ =
∂a
∂θ

=


j2π
λr

r cos (θ) cos (φ − γ1) exp
[
j2π
λr

r sin (θ) cos (φ − γ1)
]

...

j2π
λr

r cos (θ) cos (φ − γM) exp
[
j2π
λr

r sin (θ) cos (φ − γM)
]
 (2.38)

aφ =
∂a
∂φ

=


− j2π

λr
r sin (θ) sin (φ − γ1) exp

[
j2π
λr

r sin (θ) cos (φ − γ1)
]

...

− j2π
λr

r sin (θ) sin (φ − γM) exp
[
j2π
λr

r sin (θ) cos (φ − γM)
]
 . (2.39)

The error vector of the k-th impinging signal is Gaussian distributed with zero mean and

covariance matrix

Cθ̂φ̂,k =
σ2

wρ

2K det (E)

 aH
φ Q̂wQ̂H

w aφ Re
{
aH
φ Q̂wQ̂H

w aθ
}

Re
{
aH
φ Q̂wQ̂H

w aθ
}

aH
θ Q̂wQ̂H

w aθ


∣∣∣∣∣∣∣∣∣
θ=θk ,φ=φk

(2.40)

where

ρ =
[
R−1

ss

]
k,k

+ σ2
w

[
R−1

ss

(
AHA

)−1
R−1

ss

]
k,k
. (2.41)

In the case of a single impinging signal,

ρ = σ−2
s + σ2

wσ
−2
s

(
aHa

)−1
σ−2

s . (2.42)

2.2.4 CRLB for 2D Angle Estimation of a Single Source Using a UCA.

This section derives the stochastic Cramér-Rao Lower Bound (CRLB) for 2D angle of

arrival estimation of a single source using a UCA and follows a similar derivation found

in [22]. The CRLB is the lower bound on the variance of any unbiased estimator of θ and φ var
(
θ̂
)

cov
(
θ̂, φ̂

)
cov

(
φ̂, θ̂

)
var

(
φ̂
)

 ≥ CRLB
(
θ̂, φ̂

)
(2.43)

and is equal to the inverse of the Fisher Information Matrix (FIM)

CRLB
(
θ̂, φ̂

)
= F−1 (θ, φ) . (2.44)
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From (2.23) the received signal covariance matrix for a single impinging source is

Rxx = σ2
saaH + σ2

wIM×M (2.45)

where a is the steering vector as defined in (2.15), σ2
s is the signal power, and σ2

w is the

noise power. Since the received signal vector X is assumed to be a complex valued

Gaussian distrusted random process with zero mean and covariance matrix Rxx, the

stochastic FIM for the parameters θ and φ is given as [22, 23]

F (θ, φ) =

 trace
{
∂Rxx
∂θ

R−1
xx

∂Rxx
∂θ

R−1
xx

}
trace

{
∂Rxx
∂θ

R−1
xx

∂Rxx
∂φ

R−1
xx

}
trace

{
∂Rxx
∂φ

R−1
xx

∂Rxx
∂θ

R−1
xx

}
trace

{
∂Rxx
∂φ

R−1
xx

∂Rxx
∂φ

R−1
xx

}
 (2.46)

where the partial derivatives of the covariance matrix with respect to θ and φ are

∂Rxx

∂θ
= σ2

saθa
H + σ2

saaH
θ (2.47)

∂Rxx

∂φ
= σ2

saφa
H + σ2

saaH
φ . (2.48)

Element 1,1 of the FIM is

F1,1 (θ, φ) = trace
{
∂Rxx

∂θ
R−1

xx
∂Rxx

∂θ
R−1

xx

}
(2.49)

and is evaluated by substituting (2.47) into (2.46)

F1,1 (θ, φ) =
(
σ2

s

)2
trace

{(
aθaHR−1

xx + aaH
θ R−1

xx

) (
aθaHR−1

xx + aaH
θ R−1

xx

)}
. (2.50)

Performing the matrix trace operation yields

F1,1 (θ, φ) =
(
σ2

s

)2
[(

aHR−1
xx aθ

)2
+ 2

(
aHR−1

xx a
) (

aH
θ R−1

xx aθ
)

+
(
aH
θ R−1

xx a
)2
]
. (2.51)

The terms of (2.51) are evaluated by making use of the following:

aHaθ = j
2π
λr

r cos (θ)
M∑

m=1

cos (φ − γm) = 0 (2.52)

aH
θ a = −aHaθ = 0 (2.53)
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aHaφ = j
2π
λr

r sin (θ)
M∑

m=1

sin (φ − γm) = 0 (2.54)

aH
φ a = −aHaφ = 0 (2.55)

since for a UCA, the phase center of the array is located at the center of the array [22]

such that
M∑

m=1
cos (φ − γm) = 0

M∑
m=1

sin (φ − γm) = 0.
(2.56)

The inverse of the signal covariance matrix is evaluated using the Woodbury matrix

identity [22]

(A + BCD)−1 = A−1 − A−1B
(
C−1 + DA−1B

)−1
DA−1 (2.57)

such that

R−1
xx = 1

σ2
w

I − 1
σ2

w
σ2

s
+ aHa

aaH

 . (2.58)

Evaluating the first and last terms of (2.51) yields

aHR−1
xx aθ = 1

σ2
w

aHaθ −
1

σ2
w
σ2

s
+ aHa

(
aHa

) (
aHaθ

) = 0 (2.59)

aH
θ R−1

xx a = 1
σ2

w

aH
θ a −

1
σ2

w
σ2

s
+ aHa

(
aH
θ a

) (
aHa

) = 0 (2.60)

since aH
θ a = aHaθ = 0. The second term of (2.51) is evaluated as

aHR−1
xx a = 1

σ2
w

aHa −
1

σ2
w
σ2

s
+ aHa

(
aHa

) (
aHa

) (2.61)

and after simplification with aHa = ‖a‖2 and a common denominator becomes

aHR−1
xx a =

1
σ2

s

‖a‖2
σ2

w
σ2

s
+ ‖a‖2

. (2.62)

Similarly, the third term of (2.51) is evaluated as

aH
θ R−1

xx aθ = 1
σ2

w

aH
θ aθ −

1
σ2

w
σ2

s
+ aHa

(
aH
θ a

) (
aHaθ

) = 1
σ2

w
‖aθ‖2. (2.63)
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Continuing with the evaluation of element 1,1 of the FIM, (2.51) becomes

F1,1 (θ, φ) = 2 σ2
s

σ2
w

‖a‖2
σ2

w
σ2

s
+ ‖a‖2

‖aθ‖2 (2.64)

and with the assumption of omnidirectional antenna element such that ‖a‖2 = M [22],

(2.64) becomes

F1,1 (θ, φ) = 2 σ2
s

σ2
w

M
σ2

w
σ2

s
+ M
‖aθ‖2. (2.65)

Evaluating the term

‖aθ‖2 = (2πr/λr)2cos2 (θ)
M∑

m=1

cos2 (θ − γm) (2.66)

and noting that
M∑

m=1

cos2 (θ − γm) =

M∑
m=1

1 + cos (2θ − 2γm)
2

=
M
2

(2.67)

yields

‖aθ‖2 =
M
2

(2πr/λr)2cos2 (θ) (2.68)

and (2.65) becomes

F1,1 (θ, φ) =
σ2

s
σ2

w

M2

σ2
w
σ2

s
+ M

(2πr/λr)2cos2 (θ) . (2.69)

In a similar manner, elements 1,2 and 2,1 of the FIM are evaluated as

F1,2 (θ, φ) = F2,1 (θ, φ) = 2 σ2
s

σ2
w

M
σ2

w
σ2

s
+ M

(2πr/λr)2
M∑

m=1

cos (θ − γm) sin (θ − γm) = 0 (2.70)

since ∑M

m=1
cos (θ − γm) sin (θ − γm) =

∑M

m=1
1
2 sin (2θ − 2γm) = 0. (2.71)

Element 2,2 of the FIM is evaluated as

F2,2 (θ, φ) =
σ2

s
σ2

w

M2

σ2
w
σ2

s
+ M

(2πr/λr)2sin2 (θ) (2.72)

since
M∑

m=1

sin2 (θ − γm) =

M∑
m=1

1 − cos (2θ − 2γm)
2

=
M
2
. (2.73)
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Using (2.69), (2.70), and (2.72) the FIM for the parameters θ and φ is

F (θ, φ) =
σ2

s
σ2

w

M2

σ2
w
σ2

s
+ M

(2πr/λr)2

 cos2 (θ) 0

0 sin2 (θ)

 (2.74)

and the AOA CRLB using N samples of the signal X is the inverse of the FIM [22]

CRLB (θ, φ) = 1
N

[
F (θ, φ)

]−1. (2.75)

Evaluating (2.75) with (2.74) produces the stochastic CRLB on the variance of 2D angle

estimates of a single source using a UCA in rad2

CRLB (θ, φ) =

σ2
w
σ2

s
+ M

σ2
s

σ2
w

NM2(2πr/λr)2

 1
/
cos2 (θ) 0

0 1
/
sin2 (θ)

 . (2.76)

Defining η as the Signal to Noise Ratio (SNR),

η =
σ2

s

σ2
w

(2.77)

the elevation angle CRLB is

var
(
θ̂
)
≥

η−1 + M
ηNM2(2πr/λr)2cos2 (θ)

(2.78)

and the azimuth angle CRLB is

var
(
φ̂
)
≥

η−1 + M
ηNM2(2πr/λr)2sin2 (θ)

. (2.79)

In general, the CRLB for 2D angle estimates is a function of the SNR of the received

signal, number of samples N, number of antenna elements M, radius of the UCA r,

wavelength of the received signal λr, and the elevation angle θ of the received signal.

2.3 Angle of Arrival Geolocation

Geolocation of a RF Signal of Interest (SOI) emitter can be accomplished with a

two-step process using the AOA of an impinging signal and the position of the receiver

platform when the signal is received. The first step in the process is to determine the AOA
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of the received RF signal and generate a LOB in the direction of the received signal from

the position of the receiver platform when the signal was received. As the receiver passes

over the emitter, the AOA and position will vary, and the process is repeated to generate

multiple LOBs. The second step uses the collection of LOBs to estimate the position of

the emitter.

2.3.1 Lines of Bearing.

Once the AOA of the received SOI has been determined, the estimated angles along

with the attitude and position of the receiver platform are used to generate a 3D LOB in

the direction of the emitter. A LOB is a pointing vector originating at the position of the

receiver pi in the direction of the estimated angles θ̂i and φ̂i. The attitude of the receiver is

used to define the LOBs in a common coordinate system and the process is detailed in

Section 3.2. In the general case shown in Figure 2.5, the LOB vector ri from pi to a

geolocation point g in ECEF coordinates is [24]

ri = g − pi (2.80)

with Cartesian components

ri,x = gx − pi,x

ri,y = gy − pi,y

ri,z = gz − pi,z

. (2.81)

The azimuth αi and elevation εi angles in the local ECEF frame are [24]

αi = atan2
(
ri,y, ri,x

)
εi = atan2

(√
r2

i,x + r2
i,y, ri,z

) (2.82)

where αi is measured counterclockwise from the X′e-axis and εi is measured down from

the Z′e-axis. The angles and Cartesian components are related through

ri,x = ‖ri‖ sin (εi) cos (αi)

ri,y = ‖ri‖ sin (εi) sin (αi)

ri,z = ‖ri‖ cos (εi)

. (2.83)
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The vector ri is the true (error free) LOB from pi to g with the associated bearing angles

αi (g) and εi (g). The estimated i-th LOB in the ECEF coordinate system used for the

second step of the geolocation process is defined as a vector originating at point pi and

pointing in the direction of α̂i and ε̂i.

Xe

Ye

Ze
g

X'e

Y'e

Z'e

r

ε(g)

α(g)

p

Figure 2.5: LOB vector r pointing from p to g with angles α and ε in the local ECEF frame.

2.3.2 Angle of Arrival Geolocation Methods.

The second step of the AOA geolocation process is to determine the position of a RF

SOI emitter from the LOB data sets generated in the first step. If there is a single emitter

or multiple emitters that have been segregated, the LOBs as shown in Figure 2.6 will point

in the direction of a common position which is assumed to be the location of the emitter.

Two methods which utilize LOB data sets to generate geolocation estimates are the Least

Squares (LS) intersection [25, 26] and Non-Linear Optimization (NLO) [24, 27].

2.3.2.1 Least Squares Intersection.

Due to various errors (e.g. AOA estimation error, position knowledge error, and

attitude knowledge error) the collection of LOBs will not all intersect at the location of the
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Figure 2.6: Three lines of bearing and a single emitter.

emitter. However, there is a point which minimizes the squared distances between that

point and the LOBs. The closest point is found as the LS solution that minimizes the sum

of the Euclidean distances squared from a point to a set of L lines [24]. The LS

intersection point and distances from four LOBs is shown in Figure 2.7.

The method used in [26] to find the LS intersection point uses the estimated bearing

angles α̂i and ε̂i of the i-th LOB to create the Cartesian pointing vector from p̂i

ui =


sin (ε̂i) cos (α̂i)

sin (ε̂i) sin (α̂i)

cos (ε̂i)

 . (2.84)

The unit vectors of the L LOBs are used to create the following matrices

B =

L∑
i=1

I3×3 − uiuT
i

(2.85)

b =

L∑
i=1

(
I3×3 − uiuT

i

)
p̂i (2.86)

which form a set of linear equations

Bĝ = b (2.87)

where ĝ is the geolocation estimate of the emitter. The LS minimum distance solution [21]

to (2.87) is

ĝLS =
(
BT B

)−1
BT b (2.88)
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where
(
BT B

)−1
BT is the Moore-Penrose pseudoinverse of B and ĝLS is the LS intersection

geolocation estimate of the emitter.

Figure 2.7: The least squares intersection is the point which is the closest approximation

to the intersection of a set of lines of bearing. The location of the point is determined by

minimizing the sum of the distances squared to all lines in the set [24, 27].

2.3.2.2 Non-Linear Optimization.

The NLO AOA geolocation method as described in [24, 27] is an iterative non-linear

weighted least squares approach which has been shown to produce more accurate

estimates of an emitter’s location than the LS intersection method. The variance of the

angular estimates from MUSIC are used as as the weighting factors for the collection of

LOBs. NLO also produces the spatial covariance matrix of the geolocation estimate.

The iterative NLO process begins with the ri vector from position pi to a geolocation

point g as defined in (2.80) with the bearing angles αi and εi as defined in (2.82). The

angles αi and εi depend on the non-linear arctangent function. As shown in Figure 2.8, the

arctangent function is approximately linear with unit slope in the range of −π/4 to π/4. In

order to keep αi and εi in the linear range of the arctangent function, the angles are

converted to one of four local NLO reference frames shown in Figure 2.9. The frame
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conversion process begins by using the following rules to determine which reference

frame to use for the angle pair:

Frame 1: if −π4 ≤ εi ≤
π
4 and −π4 ≤ αi ≤

π
4 or 3π

4 ≤ αi ≤
5π
4

Frame 2: if −π4 ≤ εi ≤
π
4 and π

4 ≤ αi ≤
3π
4 or −3π

4 ≤ αi ≤ −
π
4

Frame 3: if |εi| >
π
4 and −π4 ≤ αi ≤

π
4 or 3π

4 ≤ αi ≤
5π
4

Frame 4: if |εi| >
π
4 and π

4 < αi <
3π
4 or −3π

4 < αi < −
π
4

Once the appropriate reference frame has been identified, the angles αNLO,i and εNLO,i, and

the gradients with respect to g, ∇gαNLO,i and ∇gεNLO,i are calculated using Equations

(2.90)–(2.93) for the selected frame. The frame conversion process ensures the values of

αNLO,i and εNLO,i lie in the −π/4 to π/4 linear range of the arctangent function and the

appropriate gradients of each angle pair are used to construct the Jacobian matrix. The

following term is defined for simplified notation:∥∥∥ri,xy

∥∥∥2
= ri,x

2 + ri,y
2. (2.89)

    











Figure 2.8: Linear approximation of the arctangent function between −π/4 and π/4 [27].
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Figure 2.9: The four NLO reference frames [27].

Frame 1: εNLO,i is measured from the X′eY
′
e-plane and αNLO,i is measured from the

X′e-axis.

εNLO,i (g) = atan2
(
ri,z,

√
r2

i,x + r2
i,y

)
αNLO,i (g) = atan2

(
ri,y, ri,x

)
∇gεNLO,i =

[
−

ri,xri,z

‖ri‖
2‖ri,xy‖

−
ri,yri,z

‖ri‖
2‖ri,xy‖

‖ri,xy‖
‖ri‖

2

]
∇gαNLO,i =

[
−

ri,y

‖ri,xy‖
2

ri,x

‖ri,xy‖
2 0

]
(2.90)

The arctangent function with two arguments (atan2) is used to return angles in the range

of −π to π in order to preserve the quadrant of the angle.
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Frame 2: εNLO,i is measured from the X′eY
′
e-plane and αNLO,i is measured from the

Y ′e-axis.

εNLO,i (g) = atan2
(
ri,z,

√
r2

i,x + r2
i,y

)
αNLO,i (g) = atan2

(
ri,x, ri,y

)
∇gεNLO,i =

[
−

ri,xri,z

‖ri‖
2‖ri,xy‖

−
ri,yri,z

‖ri‖
2‖ri,xy‖

‖ri,xy‖
‖ri‖

2

]
∇gαNLO,i =

[
ri,y

‖ri,xy‖
2 −

ri,x

‖ri,xy‖
2 0

]
(2.91)

Frame 3: εNLO,i is measured from the Z′e-axis and αNLO,i is measured from the X′e-axis.

εNLO,i (g) = atan2
(√

r2
i,x + r2

i,y, ri,z

)
αNLO,i (g) = atan2

(
ri,y, ri,x

)
∇gεNLO,i =

[
ri,xri,z

‖ri‖
2‖ri,xy‖

ri,yri,z

‖ri‖
2‖ri,xy‖

−
‖ri,xy‖
‖ri‖

2

]
∇gαNLO,i =

[
−

ri,y

‖ri,xy‖
2

ri,x

‖ri,xy‖
2 0

]
(2.92)

Frame 4: εNLO,i is measured from the Z′e-axis and αNLO,i is measured from the Y ′e-axis.

εNLO,i (g) = atan2
(√

r2
i,x + r2

i,y, ri,z

)
αNLO,i (g) = atan2

(
ri,x, ri,y

)
∇gεNLO,i =

[
ri,xri,z

‖ri‖
2‖ri,xy‖

ri,yri,z

‖ri‖
2‖ri,xy‖

−
‖ri,xy‖
‖ri‖

2

]
∇gαNLO,i =

[
ri,y

‖ri,xy‖
2 −

ri,x

‖ri,xy‖
2 0

]
(2.93)

The Jacobian matrix J (g) consists of the partial derivatives of εNLO,i and αNLO,i with

respect to the x, y, and z components of g and is given as

J (g) =



∂εNLO,1

∂gx

∂εNLO,1

∂gy

∂εNLO,1

∂gz

∂αNLO,1

∂gx

∂αNLO,1

∂gy

∂αNLO,1

∂gz

...
...

...

∂εNLO,L

∂gx

∂εNLO,L

∂gy

∂εNLO,L

∂gz

∂αNLO,L

∂gx

∂αNLO,L

∂gy

∂αNLO,L

∂gz


2L×3

=



∇gεNLO,1

∇gαNLO,1

...

∇gεNLO,L

∇gαNLO,L


2L×3

. (2.94)
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The set of L estimated angle pairs from MUSIC in the appropriate reference frames are

contained in the vector

Ω̂ =



ε̂NLO,1

α̂NLO,1

...

ε̂NLO,L

α̂NLO,L


2L×1

(2.95)

and the angles as a function of pi to g in the corresponding reference frames are

Ω (g) =



εNLO,1 (g)

αNLO,1 (g)
...

εNLO,L (g)

αNLO,L (g)


2L×1

. (2.96)

The iterative NLO process continues by using the LS geolocation estimate as the initial

NLO estimate (ĝ0 = ĝLS ) in the Gauss-Newton iteration

ĝk+1 = ĝk +
(
JT

k Σ−1
Ω Jk

)−1
JT

k Σ−1
Ω ∆Ωk (2.97)

where

∆Ωk = Ω̂ −Ω (ĝk) (2.98)

is the difference between the angles estimated from MUSIC and the angles from the k-th

geolocation estimate, ΣΩ is the covariance of the MUSIC estimated angles which are used

as the weighting factors, and

Jk = J (ĝk) (2.99)

is the Jacobian of the k-th geolocation estimate. Assuming that the angles estimated from

MUSIC are independent and Gaussian distributed implies that the covariance matrix ΣΩ

of the angles contains variances of the estimated angles along the diagonal.
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Equation (2.97) is iterated until the difference between estimates has sufficiently

converged (‖ĝk+1 − ĝk‖ < ε) and the final iteration is taken as the NLO geolocation

estimate of the emitter (ĝNLO).

The spatial covariance of the k-th geolocation estimate is related to the angular

covariance matrix through

Σĝk =
(
JT

kΣ
−1
Ω Jk

)−1
(2.100)

which can be used to visualize the confidence surface using the method developed in

Section 2.6. The NLO method will be shown to be the minimization of the maximum

likelihood cost function in Section 3.3 and (2.100) will be shown to be equivalent to the

Cramér-Rao lower bound developed in Section 3.4.

2.4 Maximum Likelihood Estimation, Gauss-Newton Iterations, and the

Cramér-Rao Lower Bound

Consider a general known scalar nonlinear function µ (θ) dependent on P scalar

parameters

θ =

[
θ1 · · · θP

]T

. (2.101)

It is desired to estimate the P unknown parameters from N ≥ P noisy observations of µ (θ)

such that

x = µ (θ) + w (2.102)

where

x =

[
x1 · · · xN

]T

, (2.103)

µ (θ) =

[
µ1 (θ) · · · µN (θ)

]T

, (2.104)

and

w =

[
w1 · · · wN

]T

. (2.105)
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The noise samples w are assumed to be independent real zero mean Gaussian random

processes distributed as

w ∼ N (0,Cw) (2.106)

with covariance matrix

Cw = diag
[
σ2

w,1, · · · , σ
2
w,N

]
N×N

. (2.107)

Due to the noise process, the N observations are distributed as

x ∼ N (µ (θ) ,Cw) (2.108)

with the conditional Probability Density Function (PDF)

f (x| θ) =
1√

(2π)N det (Cw)
exp

−1
2

N∑
n=1

(xn − µn (θ))2

σ2
w,n

 . (2.109)

The Maximum Likelihood Estimate (MLE) of the parameters θ̂MLE is taken as the value of

θ which maximizes the likelihood function [28]

θ̂MLE = arg max
θ
{ f (x| θ)} (2.110)

and is equivalent to minimizing the term in the exponent of the PDF

θ̂MLE = arg min
θ

 N∑
n=1

(xn − µn (θ))2

σ2
w,n

 . (2.111)

Writing (2.111) in matrix notation yields

θ̂MLE = arg min
θ

{[
x − µ (θ)

]T C−1
w

[
x − µ (θ)

]}
. (2.112)

Equation (2.112) is a nonlinear weighted least squares minimization problem which can

be solved using the Gauss-Newton method.

The iterative Gauss-Newton method uses a first order Taylor series expansion to

linearize the function µ (θ) about the value θ̂k [28]. The resulting linear least squares

problem is solved and the produced estimate θ̂k+1 is used to linearize µ (θ) for the next
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iteration. The method is said to converge to a solution when the difference between

successive estimates is sufficiently small. The nonlinear function µ (θ) is approximated as

a linear function about θ̂k with the expansion

µ (θ) ≈ µ
(
θ̂k

)
+ J

(
θ̂k

) [
θ − θ̂k

]
(2.113)

where the Jacobian matrix of partial derivatives of µ (θ) with respect to the P unknown

parameters is

J (θ) =


∂µ1(θ)
∂θ1

· · ·
∂µ1(θ)
∂θP

...
. . .

...

∂µN (θ)
∂θ1

· · ·
∂µN (θ)
∂θP


N×P

=


∇θµ1 (θ)

...

∇θµN (θ)


N×P

(2.114)

and the Jacobian at the current estimate θ̂k is

Jk = J
(
θ̂k

)
. (2.115)

Substituting the linear approximation of (2.113) into (2.112) yields

θ̂k+1 = arg min
θ

{[
x −

(
µ
(
θ̂k

)
+ Jk

[
θ − θ̂k

])]T
C−1

w

[
x −

(
µ
(
θ̂k

)
+ Jk

[
θ − θ̂k

])]}
(2.116)

which can be rearranged as [28, 29]

θ̂k+1 = arg min
θ


x − µ (

θ̂k

)
+ Jkθ̂k︸               ︷︷               ︸

=y

−Jkθ


T

C−1
w

x − µ (
θ̂k

)
+ Jkθ̂k︸               ︷︷               ︸

=y

−Jkθ


 (2.117)

θ̂k+1 = arg min
θ

{[
y − Jkθ

]T C−1
w

[
y − Jkθ

]}
(2.118)

where all the terms of y are known quantities. Equation (2.118) is a weighted linear least

squares minimization problem of θ with the solution [28, 29]

θ̂k+1 =
(
JT

k C−1
w Jk

)−1
JT

k C−1
w y. (2.119)

Back substituting for y produces

θ̂k+1 =
(
JT

k C−1
w Jk

)−1
JT

k C−1
w

[
x − µ

(
θ̂k

)
+ Jkθ̂k

]
(2.120)
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which after distribution of terms

θ̂k+1 =
(
JT

k C−1
w Jk

)−1
JT

k C−1
w Jk︸                    ︷︷                    ︸

=I

θ̂k +
(
JT

k C−1
w Jk

)−1
JT

k C−1
w

[
x − µ

(
θ̂k

)]
(2.121)

simplifies to the Gauss-Newton iteration [28, 29]

θ̂k+1 = θ̂k +
(
JT

k C−1
w Jk

)−1
JT

k C−1
w

[
x − µ

(
θ̂k

)]
. (2.122)

The Gauss-Newton method is said to converge when the norm of the difference between

successive iteration estimates is below a specified threshold∥∥∥θ̂k+1 − θ̂k

∥∥∥ ≤ ε (2.123)

and the final iteration is taken as the least squares estimate of the parameter vector

θ̂LS E = θ̂k+1. When the observations are Gaussian distributed, the least squares estimate is

also the MLE (θ̂MLE = θ̂LS E) [28].

An example of the Gauss-Newton iterative minimization method for 2 unknown

parameters is shown in Figure 2.10, where the function

f (θ) = θ2
1 + θ1θ2 + θ2

2 (2.124)

has a global minimum at (θ1, θ2) = (0, 0). The starting point for the first iteration step is

(θ1, θ2) = (−4,−4) and the norm of the difference from the 20th iteration to the global

minimum is less than 10−4.

The CRLB is defined [28] as the statistical lower bound on the variance of any

unbiased estimator of θ̂ such that
var

(
θ̂1

)
· · · cov

(
θ̂1, θ̂P

)
...

. . .
...

cov
(
θ̂P, θ̂1

)
· · · var

(
θ̂P

)
 ≥ CRLB

(
θ̂
)

(2.125)

and is equal to the inverse of the FIM

CRLB
(
θ̂
)

= F−1 (θ) . (2.126)
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Figure 2.10: Example Gauss-Newton iterations for a 2 parameter minimization problem.

Each element of the FIM is defined as

Fi, j (θ) = E
(∂L (x| θ)

∂θi

)T (
∂L (x| θ)
∂θ j

) (2.127)

where the log-likelihood function is the natural logarithm of the PDF

L (x| θ) = ln ( f (x| θ)) . (2.128)

For Gaussian distributed observations, the FIM of (2.127) after differentiation and the

expectation operation becomes [28]

Fi, j (θ) =

N∑
n=1

1
σ2

w,n

∂µn (θ)
∂θi

∂µn (θ)
∂θ j

(2.129)

and can be expressed using matrix notation as

F (θ) = JT (θ) C−1
w J (θ) . (2.130)
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For a large enough number of samples N, the estimates of the MLE are shown to be

asymptotically Gaussian distributed with variance equal to the CRLB such that [28]

θ̂
a
∼N

(
θ,F−1 (θ)

)
. (2.131)

2.5 Single Sinusoidal Signal Parameter Estimation

This section derives the MLE and CRLB for estimating the parameters of a single

sinusoidal signal from noisy observations. The derivation follows the example found in

[28]. It is desired to estimate the normalized frequency, amplitude, and phase of a single

complex exponential signal corrupted by AWGN. Consider N discrete samples of noisy

observations of the signal

x [n] = σs exp
[
j (2π f n + φ)

]
+ w [n] (2.132)

where the noise is complex Gaussian distributed as

w [n] ∼ C
(
0, σ2

wI
)

(2.133)

and the signal parameters to be estimated are the normalized frequency f , amplitude σs,

and phase φ

α =
[
f , σs, φ

]T . (2.134)

The normalized frequency ranges from 0 to 1 and is defined as f = fr/ fs where fr is the

received frequency of the signal and fs is the sampling frequency, both in Hz. Defining the

non-linear function

µ [n] = σs exp
[
j (2π f n + φ)

]
(2.135)

the PDF of the observed signal x conditioned on the parameters α is [28]

f (x|α) =

N∏
n=1

1
πσ2

w
exp

(
−

1
σ2

w
|x [n] − µ [n]|2

)
=

1(
πσ2

w
)N exp

− 1
σ2

w

N∑
n=1

|x [n] − µ [n]|2
 .

(2.136)
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The normalized frequency MLE is shown [28, 30, 31] to be

f̂MLE = arg max
f

∣∣∣∣∣∣∣ 1
N

N∑
n=1

x [n] exp (− j2π f n)

∣∣∣∣∣∣∣
2

(2.137)

which is the location of the maximum value of the Discrete Fourier Transform (DFT) of x

f̂MLE = arg max
f

∣∣∣∣∣ 1
N

DFT [x]
∣∣∣∣∣2. (2.138)

Similarity, [28, 30] the amplitude MLE is the value of the DFT evaluated at f̂MLE

σ̂s,MLE =

∣∣∣∣∣ 1
N

DFT [x]
∣∣∣∣∣
f = f̂MLE

. (2.139)

An example of the frequency and amplitude MLEs is shown in Figure 2.11.

0

σ̂s,MLE

f̂MLE Frequency

A
m

pl
itu

de

Figure 2.11: The normalized frequency and amplitude MLEs of a single complex

exponential signal from noisy observations are the location of the maximum value and

the maximum value of the DFT of the observations.

The FIM for complex AWGN is given as [28]

Fi, j (α) =
2
σ2

w
Re

 N∑
n=1

∂µH [n]
∂αi

∂µ [n]
∂α j

 (2.140)
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and the partial derivatives of µ [n] with respect to the normalized frequency, amplitude,

and phase are
∂µ [n]
∂ f

= j2πnσs exp
[
j (2π f n + φ)

]
(2.141)

∂µ [n]
∂σs

= exp
[
j (2π f n + φ)

]
(2.142)

∂µ [n]
∂φ

= jσs exp
[
j (2π f n + φ)

]
. (2.143)

Evaluating (2.140) yields

F (α) =
2
σ2

w


σ2

s(2π)2
N∑

n=1
n2 0 σ2

s2π
N∑

n=1
n

0 N 0

σ2
s2π

N∑
n=1

n 0 Nσ2
s


. (2.144)

Utilizing the following summation identities [28],
N∑

n=1

n =
N (N + 1)

2
(2.145)

N∑
n=1

n2 =
N (N + 1) (2N + 1)

6
(2.146)

produces the CRLB on unbiased estimates of the single sinusoidal signal parameters [28]

CRLB (α) = F−1 (α) =


6

η(2π)2N(N2−1) 0 −3
η2πN(N−1)

0 σ2
w

2N 0

−3
η2πN(N−1) 0 2N+1

ηN(N−1)

 . (2.147)

The normalized frequency, amplitude, and phase CRLBs are therefore

var
(

f̂
)
≥

6
η(2π)2N

(
N2 − 1

) (2.148)

var (σ̂s) ≥
σ2

w

2N
(2.149)

var
(
φ̂
)
≥

2N + 1
ηN (N − 1)

. (2.150)

The variance of the received frequency fr in Hz2 is

var
(

f̂r

)
≥

6 f 2
s

η(2π)2N
(
N2 − 1

) . (2.151)
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2.6 Confidence Surfaces

Using a single unbiased Gaussian distributed estimate θ̂ of a k × 1 vector parameter θ

with k × k covariance matrix Cθ̂,

θ̂ ∼ N
(
θ,Cθ̂

)
(2.152)

it is possible to define a k-dimensional surface centered at the estimate θ̂ which has the

probability P of containing the value of the θ parameter. The k-dimensional confidence

surface is defined by the quadratic relation(
θ − θ̂

)T
C−1
θ̂

(
θ − θ̂

)
= c2 (2.153)

where c is a constant to be determined that defines a contour of constant probability. The

probability P that the value θ is contained within the confidence surface centered at the

estimate θ̂ is given as [28, 32]

P = Pr
{(
θ − θ̂

)T
C−1
θ̂

(
θ − θ̂

)
≤ c2

}
. (2.154)

Letting u =
(
θ − θ̂

)T
C−1
θ̂

(
θ − θ̂

)
, since θ̂ is Gaussian distributed with covariance Cθ̂ and u

is a quadratic sum of Gaussian random variables, u is a Chi-squared random variable with

k degrees of freedom [28, 32]

u ∼ χ2
k . (2.155)

The PDF of the Chi-squared distribution is given as [33]

χ2
k (u) =

e−u/2uk/2−1

2k/2Γ (k/2)
(2.156)

where the complete Gamma function is defined as [33]

Γ (α) =

∞∫
0

e−ttα−1dt. (2.157)

Using the Cumulative Distribution Function (CDF) of the Chi-squared distribution to

evaluate (2.154), the probability P, constant c, and dimension k are related through [32]

P = Pr
{
u ≤ c2

}
=
γ
(

k
2 ,

c2

2

)
Γ
(

k
2

) (2.158)
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where the lower incomplete Gamma function is defined as [33]

γ (α, β) =

β∫
0

e−ttα−1dt. (2.159)

When k = 2 dimensions, u is exponentially distributed and the constant c can be

defined in terms of the probability P using [28, 32]

c =

√
2 ln

(
1

1 − P

)
. (2.160)

Using c and (2.153), the resulting surface defines a confidence ellipse centered at θ̂ with

probability P of containing the θ value as shown in Figure 2.12.

When k = 3 dimensions, a value of c ≈ 2.7959 with (2.158) yields P = 0.95, and is a

95% confidence ellipsoid surface defined by

(
θ − θ̂

)T
C−1
θ̂

(
θ − θ̂

)
= (2.7959)2. (2.161)

θ̂

θ

 

 

θ1

θ
2

Figure 2.12: 2D confidence ellipse centered at θ̂ with a 95% probability of containing θ.
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III. Methodology

This chapter outlines the analysis scenario in Section 3.1, defines the relationship

between reference frames in Section 3.2, derives the geolocation maximum likelihood

estimators in Section 3.3, derives the Cramér-Rao lower bound on geolocation estimates

in Section 3.4, and details the geolocation performance analysis in Section 3.5.

3.1 Scenario Overview

Consider a single RF SOI emitter located at the Air Force Institute of Technology

(Latitude: 39.782◦ N, Longitude: 84.083◦ W, Altitude: 0 m) transmitting a 1315 MHz

narrowband signal. The signal is received by a single 6U CubeSat in a 60◦ inclined 450

km circular LEO over the SOI. The assumed CubeSat geolocation payload consists of a 4

element UCA tuned to 1315 MHz and calibrated to perform AOA measurements. Each

antenna array element is connected to a RF receiver for filtering, demodulation, and

digitizing the received signals from the antennas. The 4 payload receivers are assumed to

be frequency and phase coherent with sufficient bandwidth and sampling rate to process

the received signals. Estimation of signal parameters from the received signals, running

geolocation algorithms, and interfacing with other CubeSat subsystems is accomplished

through a dedicated payload processor with sufficient processing capability. The CubeSat

is also assumed to have a Guidance Navigation and Control (GNC) subsystem consisting

of an onboard Global Positioning System (GPS) receiver to provide position and velocity

information, and an Attitude Determination and Control System (ADCS) to provide

attitude information and maintain a Local Vertical Local Horizontal (LVLH) orientation

over the RF SOI. The assumed payload functional diagram is shown in Figure 3.1.

This analysis scenario considers only a single RF emitter with no co-channel

interference. It is assumed that the signals collected from multiple RF emitters have been
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RF Receiver

RF Receiver

RF Receiver

RF Receiver

Uniform Circular
Antenna Array

Payload
Processor

GPS ADCS

GNC

Figure 3.1: Assumed CubeSat geolocation payload consisting of a 4 element UCA,

4 frequency and phase coherent RF receivers, and a payload processor interfaced with the

CubeSat GNC subsystem.

properly segregated such that the estimated signal parameters used as inputs into the

geolocation algorithms correspond to a single emitter. Methods for data association and

segregation of multiple emitters with co-channel interference, as well as the

implementation of specific RF receiver and payload processor design, are beyond the

scope of this thesis.

The payload UCA shown in Figure 3.2 consists of 4 antenna elements evenly spaced

around a circle on the nadir face of a 6U CubeSat. The UCA elements lie in the xy-plane

and are centered at the origin of the sensor reference frame. Using (2.5) the wavelength of

the 1315 MHz SOI is 0.228 m, and the diameter of the UCA is 0.114 m to satisfy the λr/2

antenna element spacing requirement of MUSIC. The counterclockwise angles of the

antenna elements from the x-axis are: γ1 = 45◦, γ2 = 135◦, γ3 = 225◦, and γ4 = 315◦. It is

assumed that the payload antenna array is properly calibrated with a uniform

hemispherical gain pattern to receive the SOI planar EM wavefront. Implementation

specific antenna design to include variable gain patterns, mutual coupling, calibration, and

other antenna parameters, are beyond the scope of this thesis.
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Figure 3.2: Assumed geolocation payload 4 element UCA located on the nadir face of a

6U CubeSat.

The analysis scenario geometry is shown in Figures 3.3 and 3.4 where the RF SOI is

located at position g. The gain pattern of the RF SOI is modeled as a uniform cone

centered at g and extending 10◦ above the horizon with an 80◦ cone half angle. The single

6U CubeSat receiver platform in a 60◦ inclined, 450 km altitude, circular orbit receives the

RF SOI at ECEF positions pi and velocities vi while traveling through the cone. Different

types of RF emitters are simulated by varying the number of signal collects, the timing

between signal collects, and the SNR of the received signals. Emitter types and other

simulation variables are described in Section 3.5.
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10°

g

pi  vi

Figure 3.3: Profile view of the analysis scenario geometry. The RF SOI gain pattern is an

80◦ half angle cone centered at g. The single moving platform receives the SOI at positions

pi and velocities vi.

g

pi  vi

Figure 3.4: Top-down view of the analysis scenario geometry.
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3.2 Reference Frame Transformations

The relationships between the local reference frames used in this thesis are shown in

Figure 3.5. The reference frame transformation process uses the points p and g with the

attitude of the CubeSat to determine the azimuth φ(g) and elevation θ(g) angles in the

sensor reference frame as a function of geolocation point g. The expressions for φ(g) and

θ(g) are used to derive the MLE and CRLB for AOA geolocation in Sections 3.3 and 3.4.

X'e

Y'e

Z'e

r

ε(g)

α(g)

Local ECEF Local ENU Sensor

E

N

U

r r
y

x

z

ϕ(g)

θ(g)

ϕENU (g)

θENU (g)

p p p

Figure 3.5: Relationships between the local reference frames.

3.2.1 ECEF to Local ECEF Reference Frame Transformation.

Using the LOB vector r = g − p in ECEF coordinates between the receiver position p

and geolocation point g, the corresponding azimuth and elevation angles in the local

ECEF frame are

α (g) = atan2
(
gy − py, gx − px

)
ε (g) = atan2

(√
(gx − px)2 +

(
gy − py

)2
, gz − pz

) (3.1)
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where α(g) is measured down from the local Z′e-axis and ε is measured counterclockwise

from the local X′e-axis. The local ECEF LOB vector Cartesian coordinates are

X′e = sin (ε (g)) cos (α (g))

Y ′e = sin (ε (g)) sin (α (g))

Z′e = cos (ε (g))

(3.2)

which can be expressed in terms of p and g as

X′e =

√
(gx−px)2+(gy−py)2

(gz−pz)

√
(gx−px)2+(gy−py)2

(gz−pz)2 +1

√
(gy−py)2

(gx−px)2
+1

Y ′e =
(gy−py)

√
(gx−px)2+(gy−py)2

(gx−px)(gz−pz)

√
(gx−px)2+(gy−py)2

(gz−pz)2 +1

√
(gy−py)2

(gx−px)2
+1

Z′e = 1√
(gx−px)2+(gy−py)2

(gz−pz)2 +1

.

(3.3)

3.2.2 Local ECEF to Local ENU Reference Frame Transformation.

The local ENU coordinates are obtained through the Direction Cosine Matrix (DCM)

operation on the local ECEF coordinates [34]
E

N

U

 = RENU/ECEF

(
ϕg, λg

)


X′e

Y ′e

Z′e

 (3.4)

where the DCM RENU/ECEF

(
ϕg, λg

)
is a function of the geodetic latitude ϕg and geodetic

longitude λg of point p,

RENU/ECEF

(
ϕg, λg

)
=


− sin

(
λg

)
cos

(
λg

)
0

− sin
(
ϕg

)
cos

(
λg

)
− sin

(
ϕg

)
sin

(
λg

)
cos

(
ϕg

)
cos

(
ϕg

)
cos

(
λg

)
cos

(
ϕg

)
sin

(
λg

)
sin

(
ϕg

)
 . (3.5)

The local ENU coordinates in terms of the local ECEF coordinates are

E = −X′e sin
(
λg

)
+ Y ′e cos

(
λg

)
N = −X′e sin

(
ϕg

)
cos

(
λg

)
− Y ′e sin

(
ϕg

)
sin

(
λg

)
+ Z′e cos

(
ϕg

)
U = X′e cos

(
ϕg

)
cos

(
λg

)
+ Y ′e cos

(
ϕg

)
sin

(
λg

)
+ Z′e sin

(
ϕg

)
.

(3.6)
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The local ENU azimuth angle φENU (g) is measured clockwise from the N-axis and local

elevation angle θENU (g) is measured up from the NE-plane

φENU (g) = atan2 (E,N)

θENU (g) = atan2
(
U,
√

E2 + N2
)
.

(3.7)

The expressions for φENU (g) and θENU (g) in terms of p and g are obtained by substituting

(3.3) and (3.6) into (3.7).

3.2.3 Local ENU to Sensor Reference Frame Transformation.

It is assumed that the CubeSat is in a LVLH orientation over the RF SOI where the

x-axis of the sensor frame is aligned with the velocity vector of the CubeSat and the z-axis

points towards nadir in the opposite direction of the U-axis. The xy-plane of the sensor

frame is coplanar with the NE-plane of the local ENU reference frame. The relationship

between the local ENU and sensor reference frames is shown in Figure 3.6 and the

expressions of the azimuth φ (g) and elevation θ (g) angles in the sensor reference frame

are
φ (g) = φENU (g) − φNorth

θ (g) = θENU (g) + π
2

(3.8)

where φNorth is the angle between the x-axis and N-axis. If the CubeSat is not in a LVLH

orientation, then the appropriate transformation from the ENU to the sensor frame will

apply.

3.2.4 Sensor Reference Frame to ECEF Coordinate System Transformation.

The MUSIC algorithm described in Section 2.2 estimates the azimuth and elevation

angles of the received SOI which are used to generate a LOB from p in the direction of the

estimated angles φ̂ and θ̂. In order geolocate the RF SOI, the LOB is transformed from the

sensor reference frame to the ECEF coordinate system. The process begins by
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Figure 3.6: Relationship between the local ENU and sensor reference frames assuming a

LVLH CubeSat orientation.

transforming the estimated angles in the senor frame to the local ENU reference frame,

φ̂ENU = φ̂ + φNorth + φerror

θ̂ENU = θ̂ − π
2 + θerror

(3.9)

where the attitude knowledge error is expressed in terms of φerror and θerror. The local

ENU Cartesian components are

Ê = cos
(
θ̂ENU

)
sin

(
φ̂ENU

)
N̂ = cos

(
θ̂ENU

)
cos

(
φ̂ENU

)
Û = sin

(
θ̂ENU

)
.

(3.10)

The local ECEF Cartesian components are related to the local ENU Cartesian components

through 
X̂′e

Ŷ ′e

Ẑ′e

 = RECEF/ENU

(
ϕg, λg

)


Ê

N̂

Û

 (3.11)

45



where RECEF/ENU

(
ϕg, λg

)
=

[
RENU/ECEF

(
ϕg, λg

)]T
is the DCM from the local ENU to

local ECEF reference frame. The local ECEF estimated azimuth and elevation angles are

α̂ = atan2
(
Ŷ ′e, X̂

′
e

)
ε̂ = atan2

(√(
X̂′e

)2
+

(
Ŷ ′e

)2
, Ẑ′e

)
.

(3.12)

The i-th estimated LOB in the ECEF coordinate system is the vector r̂i originating from

the position p̂i and pointing the α̂i and ε̂i direction,

r̂i = p̂i +


X̂′i,e

Ŷ ′i,e

Ẑ′i,e

 (3.13)

where p̂i = pi + perror is the estimated position with position knowledge error.

3.3 Geolocation Maximum Likelihood Estimators

This section develops the geolocation MLEs used in this thesis. From the received

signals, the collection of AOA and Frequency of Arrival (FOA) measurements are used to

estimate the location ĝ of the RF SOI. From (2.7), the received FOA in Hz consists of the

RF carrier frequency and Doppler shifted frequency

fr (g) = fc + fd (g) . (3.14)

The Doppler frequency

fd (g) = −
fc

c
ḋ (g) (3.15)

is a function of the position g of the SOI along with the position and velocity of the

receiver where ḋ (g) is the range rate of the distance between p and g. Letting

v =

[
vx vy vz

]T

be the XeYeZe components of the receiver velocity in the ECEF

coordinate system, the range rate is given as [35, 36]

ḋ (g) =
vT r (g)
‖r (g)‖

=

vx (px − gx) + vy

(
py − gy

)
+ vz (pz − gz)√

(px − gx)2 +
(
py − gy

)2
+ (pz − gz)2

 . (3.16)
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If fc is assumed to be known, the observed frequency after demodulation consists solely of

the Doppler frequency shift and the FOA of the i-th signal collect is

fd,i (g) = −
fc

c

vx,i
(
px,i − gx

)
+ vy,i

(
py,i − gy

)
+ vz,i

(
pz,i − gz

)√(
px,i − gx

)2
+

(
py,i − gy

)2
+

(
pz,i − gz

)2

 . (3.17)

Consider a single moving receiver in the ECEF coordinate system at position p and

velocity v receiving signals from a single RF SOI located at g. At each signal collect, the

angles and frequency of arrival are estimated from the received signal. Let the i-th set of

estimated parameters be

Ω̂i =


θ̂ENU,i

φ̂ENU,i

f̂d,i

 (3.18)

where θ̂ENU,i and φ̂ENU,i are the estimated elevation and azimuth angles in the ENU

reference frame to account for attitude knowledge error, and f̂d,i is the estimated received

frequency of the signal. The true parameter values as a function of pi, vi and g are

Ωi (g) =


θENU,i (g)

φENU,i (g)

fd,i (g)

 (3.19)

where θENU,i (g) and φENU,i (g) are defined in (3.7), and fd,i (g) is defined in (3.17). The

variance of the estimated parameters with the additional attitude and frequency knowledge

errors are contained in the covariance matrix of the i-th set of parameters,

CΩ̂,i =


σ2
θ̂,i

+ σ2
attitude,i 0 0

0 σ2
φ̂,i

+ σ2
attitude,i 0

0 0 σ2
f̂ ,i

+ σ2
frequency,i

 (3.20)

where σ2
θ̂,i

is the elevation error variance, σ2
φ̂,i

is the azimuth error variance, σ2
f̂ ,i

is the

frequency error variance, σ2
attitude,i is the attitude knowledge error variance, and σ2

frequency,i

is the frequency knowledge error variance.
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If each set of estimated parameters are Gaussian distributed such that

Ω̂i ∼ N
(
Ωi (g) ,CΩ̂,i

)
(3.21)

then the PDF of a collection of L sets of parameters conditioned on g is

f
(
Ω̂1, · · · , Ω̂L

∣∣∣ g) =

L∏
i=1

(2π)−
3
2
[
det

(
CΩ̂,i

)]−1
2 exp

[
−

1
2

(
Ω̂i −Ωi (g)

)T
C−1

Ω̂,i

(
Ω̂i −Ωi (g)

)]
(3.22)

and taking the natural logarithm of the PDF produces the log-likelihood function

L
(
Ω̂1, · · · , Ω̂L

∣∣∣ g) =

−
3L
2

ln (2π) −
1
2

ln

 L∏
i=1

det
(
CΩ̂,i

) − 1
2

L∑
i=1

(
Ω̂i −Ωi (g)

)T
C−1

Ω̂,i

(
Ω̂i −Ωi (g)

)
. (3.23)

If the parameter estimates are independent with the covariance of (3.20), then the

log-likelihood function becomes

L
(
Ω̂1, · · · , Ω̂L

∣∣∣ g) =

−
3L
2

ln (2π) −
1
2

ln

 L∏
i=1

(
σ2
θ̂,i + σ2

attitude,i

) (
σ2
φ̂,i + σ2

attitude,i

) (
σ2

f̂ ,i
+ σ2

frequency,i

)
−

1
2

 L∑
i=1

(
θ̂ENU,i − θENU,i (g)

)2

σ2
θ̂,i

+ σ2
attitude,i

+

L∑
i=1

(
φ̂ENU,i − φENU,i (g)

)2

σ2
φ̂,i

+ σ2
attitude,i

+

L∑
i=1

(
f̂d,i − fd,i (g)

)2

σ2
f̂ ,i

+ σ2
frequency,i

 .
(3.24)

As described in Section 2.4, the MLE of the parameter g is the value of g which

maximizes the log-likelihood function. Maximization of the log-likelihood function is

accomplished by minimizing the the summation terms. Utilizing angle and frequency

estimates, the AOA/FOA geolocation MLE is [37, 38]

ĝAOA/FOA =

arg min
g


L∑

i=1

(
θ̂ENU,i − θENU,i (g)

)2

σ2
θ̂,i

+ σ2
attitude,i

+

L∑
i=1

(
φ̂ENU,i − φENU,i (g)

)2

σ2
φ̂,i

+ σ2
attitude,i

+

L∑
i=1

(
f̂d,i − fd,i (g)

)2

σ2
f̂ ,i

+ σ2
frequency,i

 .
(3.25)
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Using just the estimated angles, the AOA geolocation MLE is [39]

ĝAOA = arg min
g


L∑

i=1

(
θ̂ENU,i − θENU,i (g)

)2

σ2
θ̂,i

+ σ2
attitude,i

+

L∑
i=1

(
φ̂ENU,i − φENU,i (g)

)2

σ2
φ̂,i

+ σ2
attitude,i

 . (3.26)

Using just the estimated frequency, the FOA geolocation MLE is [5]

ĝFOA = arg min
g


L∑

i=1

(
f̂d,i − fd,i (g)

)2

σ2
f̂ ,i

+ σ2
frequency,i

 . (3.27)

The non-linear weighted least-squares minimization of (3.25) for the AOA/FOA MLE

is solved using the iterative Gauss-Newton process. The AOA and FOA solutions are

derived by omitting the frequency and angle terms, respectively. Equation (3.25) is

expressed in matrix notation as

ĝAOA/FOA = arg min
g

{[
Ω̂ −Ω (g)

]T
C−1
Ω̂

[
Ω̂ −Ω (g)

]}
(3.28)

where the collection of L sets of estimated parameters is

Ω̂ =

[
θ̂ENU,1 φ̂ENU,1 f̂d,1 · · · θ̂ENU,L φ̂ENU,L f̂d,L

]T

1×3L
, (3.29)

with covariance

CΩ̂ = diag
[

CΩ̂,1 · · · CΩ̂,L

]
3L×3L

, (3.30)

and the true parameter values as a function of g are

Ω (g) =

[
θENU,1 (g) φENU,1 (g) fd,1 (g) · · · θENU,L (g) φENU,L (g) fd,L (g)

]T

1×3L
.

(3.31)

The gradients of the angle and frequency functions with respect to the ECEF components

of g are

∇gθENU,i (g) =

[
∂θENU,i(g)

∂gx

∂θENU,i(g)
∂gy

∂θENU,i(g)
∂gz

]
(3.32)

∇gφENU,i (g) =

[
∂φENU,i(g)

∂gx

∂φENU,i(g)
∂gy

∂φENU,i(g)
∂gz

]
(3.33)

∇g fd,i (g) =

[
∂ fd,i(g)
∂gx

∂ fd,i(g)
∂gy

∂ fd,i(g)
∂gz

]
. (3.34)
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The partial derivatives of the non-linear angle and frequency functions can be evaluated

numerically by defining the following perturbation terms:

∆x =

[
1 0 0

]T

∆y =

[
0 1 0

]T

∆z =

[
0 0 1

]T

.

(3.35)

The partial derivatives of the elevation angles are approximated as:

∂θENU,i(g)
∂gx

≈ θENU,i (g + ∆x) − θENU,i (g)
∂θENU,i(g)

∂gy
≈ θENU,i

(
g + ∆y

)
− θENU,i (g)

∂θENU,i(g)
∂gz

≈ θENU,i (g + ∆z) − θENU,i (g) .

(3.36)

The partial derivatives of the azimuth angles are approximated as:

∂φENU,i(g)
∂gx

≈ φENU,i (g + ∆x) − φENU,i (g)
∂φENU,i(g)

∂gy
≈ φENU,i

(
g + ∆y

)
− φENU,i (g)

∂φENU,i(g)
∂gz

≈ φENU,i (g + ∆z) − φENU,i (g) .

(3.37)

The partial derivatives of the frequencies are approximated as:

∂ fd,i(g)
∂gx
≈ fd,i (g + ∆x) − fd,i (g)

∂ fd,i(g)
∂gy
≈ fd,i

(
g + ∆y

)
− fd,i (g)

∂ fd,i(g)
∂gz
≈ fd,i (g + ∆z) − fd,i (g) .

(3.38)

The gradients of the i-th set of true parameters is

∇gΩi (g) =


∇gθENU,i (g)

∇gφENU,i (g)

∇g fd,i (g)


3×3

(3.39)

and the Jacobian of the collection of L sets is

J (g) =


∇gΩ1 (g)

...

∇gΩL (g)


3L×3

. (3.40)
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The Gauss-Newton iterations for the AOA/FOA geolocation MLE becomes

ĝk+1 = ĝk +
(
JT (ĝk) C−1

Ω̂
J (ĝk)

)−1
JT (ĝk) C−1

Ω̂

[
Ω̂ −Ω (ĝk)

]
(3.41)

and is iterated until successive estimates converge to a specified threshold

(‖ĝk+1 − ĝk‖ ≤ ε) or a specified number of iterations has been reached. The least squares

intersection point of the collection of LOBs is used as the starting iteration (ĝ1 = ĝLS ).

The Gauss-Newton process for the AOA geolocation MLE is equivalent to the NLO

method described in Section 2.3.2.2 and [24, 27]. An example of the Gauss-Newton

iterations for the AOA/FOA geolocation MLE is shown in Figure 3.7 where after 16

iterations, the difference between iterations is less than 1 m (‖ĝ16 − ĝ15‖ ≤ 1 m) and the

final iteration is the AOA/FOA estimate of the emitter location
(
ĝAOA/FOA = ĝ16

)
.
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Figure 3.7: Gauss-Newton iterations for the AOA/FOA geolocation MLE. The initial

iteration is the LS intersection of the collection of LOBs and the final iteration is the

AOA/FOA estimate of the emitter location.
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The 95% confidence surface of the final geolocation estimate is the ellipsoid in the

ECEF coordinate system centered at ĝ and defined by


x

y

z

 − ĝ



T

(
JT (ĝ) C−1

Ω̂
J (ĝ)

)−1




x

y

z

 − ĝ

 = (2.7959)2 (3.42)

where x, y, and z are the ECEF components. An example of the confidence surfaces for

the AOA, FOA, and AOA/FOA geolocation estimates is shown in Figure 3.8 where the

term
(
JT (ĝ) C−1

Ω̂
J (ĝ)

)−1
is the approximated CRLB for estimate ĝ.
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Figure 3.8: Confidence surfaces for single estimates of the emitter location from the AOA,

FOA, and AOA/FOA maximum likelihood estimators. The LS intersection is used as the

initial iteration for the estimators.
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3.4 Cramér-Rao Lower Bound on Geolocation Estimates

cov (ĝ) ≥ CRLB (ĝ) =
(
JT (g) C−1

Ω J (g)
)−1

(3.43)

For a particular geolocation analysis scenario where L sets of angle and frequency

measurements collected by a single moving receiver at positions pi and velocities vi from a

RF emitter located at g, the covariance of unbiased estimates of g is bounded by the CRLB
var (ĝx) cov

(
ĝx, ĝy

)
cov (ĝx, ĝz)

cov
(
ĝx, ĝy

)
var

(
ĝy

)
cov

(
ĝy, ĝz

)
cov (ĝx, ĝz) cov

(
ĝy, ĝz

)
var (ĝz)

 ≥ CRLB (ĝ) . (3.44)

The FIM for Gaussian distributed AOA and FOA measurements is

FAOA/FOA (g) = E
{[
∇gL

(
Ω̂1, · · · , Ω̂L

∣∣∣ g)]T [
∇gL

(
Ω̂1, · · · , Ω̂L

∣∣∣ g)]} (3.45)

and after evaluation of the gradient and expectation operations becomes

FAOA/FOA (g) =

L∑
i=1

[
∇gΩi (g)

]T
C−1

Ω,i

[
∇gΩi (g)

]
. (3.46)

Using the matrix notation defined in Section 3.3, the FIM for AOA/FOA is expressed as

FAOA/FOA (g) = JT (g) C−1
Ω J (g) , (3.47)

the FIM for AOA is,

FAOA (g) =

L∑
i=1

[
∇gθENU,i (g)

]T [
∇gθENU,i (g)

]
σ2
θ,i + σ2

attitude,i

+

L∑
i=1

[
∇gφENU,i (g)

]T [
∇gφENU,i (g)

]
σ2
φ,i + σ2

attitude,i

, (3.48)

the FIM for FOA is

FFOA (g) =

L∑
i=1

[
∇g fd,i (g)

]T [
∇g fd,i (g)

]
σ2

f ,i + σ2
frequency,i

, (3.49)

and the CRLB for each geolocation method is equal to the inverse of the respective FIM

CRLB (ĝ) = F−1 (g) . (3.50)
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An example of the CRLBs on geolocation estimates is shown in Figure 3.9 where the

CRLBs are visualized as 95% confidence surfaces centered at the true emitter position and

defined by the FIM covariance matrix. Given a sufficient number of L signal collects, the

estimates of the emitter location are asymptotically distributed as

ĝ a
∼N

(
g,F−1 (g)

)
. (3.51)

Xe (km)
Ye (km)

Z
e (

km
)

0 5 10
-5-10-5

0

5

  5

 -5

  0

AOA CRLB

FOA CRLB

AOA/FOA CRLB

True Emitter Position

Figure 3.9: Cramér-Rao lower bounds on geolocation estimates of the emitter location

for the AOA, FOA, and AOA/FOA geolocation methods visualized as 95% confidence

surfaces.

3.5 Geolocation Algorithm Performance Analysis

This section describes the simulation environment used to evaluate the performance of

the geolocation algorithms developed in this thesis. Systems Tool Kit (STK) 10 developed
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by Analytical Graphics Inc. was used to model the analysis scenario geometry of a single

CubeSat in LEO and a single RF SOI. MATLAB developed by MathWorks Inc. was used

implement the geolocation algorithms using simulated estimates of the signal parameters

based off the orbital position and velocity data generated from STK.

3.5.1 Orbital Position and Velocity Simulation.

The analysis scenario was modeled in STK and outputs the orbital position and

velocity data in 1 second intervals to simulate the CubeSat onboard GNC subsystem. The

RF SOI was modeled as shown in Figures 3.3 and 3.4 as an 80◦ half angle cone centered

at 39.782◦ N latitude, 84.083◦ W longitude, and 0 m altitude. The single CubeSat platform

was modeled as a 60◦ inclined, 450 km circular orbit. The right ascension of the ascending

node orbital parameter was varied in 2.5◦ increments to produce 11 passes of the CubeSat

over the SOI as shown in Figure 3.10 with the time durations shown in Table 3.1. Each

pass produces a set of ECEF position and velocity data in 1 second intervals when the

CubeSat is traveling through the SOI cone. The intervals of pass 7 are shown in Table 3.2

as an example.

Table 3.1: Time duration of each orbital pass of the CubeSat over the RF SOI.

Pass: 1 2 3 4 5 6 7 8 9 10 11

Duration (s): 72 184 247 294 331 363 386 405 417 425 428

3.5.2 Geolocation Algorithm Simulation.

The analysis scenario positions and velocities for a given pass are imported to the

MATLAB environment to simulate the parameter measurements and to assess the

performance of the geolocation algorithms. A single RF SOI is located at position g and

the collection of L measurements are simulated from the true parameters of the pass from
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Figure 3.10: 11 orbital passes of a single CubeSat over the RF SOI.

Table 3.2: ECEF position and velocity data for pass 7.

Time t (s) Xe (m) Ye (m) Ze (m) vx (m/s) vy (m/s) vz (m/s)

1 -915252 -5557270 3860379 4729.851 2699.525 5007.538

2 -910526 -5554566 3865384 4731.386 2705.758 5002.701
...

386 968956 -4096095 5376484 4934.411 4771.814 2746.139

the analysis scenario. All measurements are assumed to be Gaussian distributed with the

value of the means being the true parameter values. The measurement variances are

defined by the estimator’s respective CRLBs and an additional error variance. The CRLB

variances are in terms of the number of samples N per measurement, the SNR η of each

measurement, and the associated system parameters. The performance of the single

sinusoidal parameter estimators for angle, frequency, and SNR measurements will be
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shown in Section 4.1 and the threshold is defined where the estimator performance

achieves the respective CRLB.

The i-th estimate of the CubeSat position and velocity are simulated as

p̂i ∼ N
(
pi, σ

2
positionI3×3

)
(3.52)

and

v̂i ∼ N
(
vi, σ

2
velocityI3×3

)
(3.53)

where σ2
position and σ2

velocity are the variances of the position knowledge error and velocity

knowledge error, respectively.

The i-th estimate of the elevation angle in the local ENU reference frame is simulated

as

θ̂ENU,i ∼ N
(
θENU,i (g) , σ2

θ,i + σ2
attitude

)
(3.54)

where the true elevation angle is

θENU,i (g) = atan2
(
Ui,

√
E2

i + N2
i

)
, (3.55)

the elevation angle CRLB is

σ2
θ,i =

[
ηi (g)

]−1
+ M

ηi (g) NM2(2πr/λr,i
)2cos2 (

θENU,i (g) + π/2
)

(π/180)2
, (3.56)

and σ2
attitude is the variance of the attitude knowledge error.

The i-th estimate of the azimuth angle in the local ENU reference frame is simulated as

φ̂ENU,i ∼ N
(
φENU,i (g) , σ2

φ,i + σ2
attitude

)
(3.57)

where the true azimuth angle is

φENU,i (g) = atan2 (Ei,Ni) , (3.58)

and the azimuth angle CRLB is

σ2
φ,i =

[
ηi (g)

]−1
+ M

ηi (g) NM2(2πr/λr,i
)2sin2 (

θENU,i (g) + π/2
)

(π/180)2
. (3.59)
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An example of L LOBs in the ECEF coordinate system using the estimated positions and

angles is shown in Figure 3.11.

RF SOI

1
23

L

Figure 3.11: Lines of bearing using the simulated positions and angles from an analysis

scenario pass.

The i-th estimate of the Doppler shifted frequency is simulated as

f̂d,i ∼ N
(

fd,i (g) , σ2
fd ,i + σ2

frequency

)
(3.60)

where the true Doppler shifted frequency is

fd,i (g) = −
fc

c

vx,i
(
px,i − gx

)
+ vy,i

(
py,i − gy

)
+ vz,i

(
pz,i − gz

)√(
px,i − gx

)2
+

(
py,i − gy

)2
+

(
pz,i − gz

)2

 , (3.61)

the frequency CRLB is

σ2
fd ,i =

6 f 2
s

ηi (g) (2π)2N
(
N2 − 1

) , (3.62)

and σ2
frequency is the variance of the frequency knowledge error.

The i-th estimate of the received SNR is simulated as

η̂i ∼ N
(
ηi (g) , σ2

η

)
(3.63)
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where the true SNR is

ηi (g) =
σ2

t GtGr

LaLpLs,i (g, λc) κTsysW
(3.64)

and the SNR CRLB is

σ2
η =

1
2N

. (3.65)

The received SNR is a function of the assumed transmitter parameters, assumed receiver

parameters, and free space path loss. If the transmitter and receiver properties are assumed

constant, then the received SNR varies due to the free space path loss, such that

ηi (g) =
const.

Ls,i (g, λc)
(3.66)

where the free space path loss is a function of the distance between transmitter and

receiver, and the wavelength of the transmitted signal

Ls,i (g, λc) =

4π
λc

√(
px,i − gx

)2
+

(
py,i − gy

)2
+

(
pz,i − gz

)2

2

. (3.67)

In order to generalize the received SNR parameter, the SNR at the first signal collect η1 is

used to define the SNR of subsequent signal collects such that

ηi (g) = η1
Ls,1 (g, λc)
Ls,i (g, λc)

. (3.68)

An example link budget for the received SNR at the first signal collect is shown in

Table 3.3. The distance from transmitter to receiver in the analysis scenario is

approximately 1,600 km. The transmitter parameters are expressed as the Effective

Isotropic Radiated Power (EIRP). The atmospheric attenuation at 1,315 MHz is assumed

to be 0.5 dB [40] and constant. Assuming a vertically polarized transmit antenna and a

circularly polarized receive antenna array, the polarization mismatch loss is -3 dB.

Assuming a noise temperature of 800 K and 200 kHz signal bandwidth of interest, the

received SNR at the first signal collect is 9.2 dB. Since defining implementation specific

parameters is beyond the scope of this thesis, the η1 parameter is used to represent the

transmitter and receiver system parameters.
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Table 3.3: Example link budget for the received SNR at the first signal collect.

Transmitter Frequency fc 1,315 MHz

Propagation Path Length d 1,600 km

Transmitter EIRP σ2
t Gt 20.0 dB

Free Space Path Loss Ls (g, λc) -158.9 dB

Atmospheric Loss La -0.5 dB

Receiver Antenna Gain Gr 5.0 dB

Polarization Loss Lp -3.0 dB

Received Signal Power σ2
r -137.4 dBW

System Noise Temperature Tsys 800 K

Noise Bandwidth W 200 kHz

Noise Power σ2
w -146.6 dBW

Received SNR η 9.2 dB

The 4 geolocation algorithms implemented in the MATLAB simulation are the LS

intersection, and the AOA/FOA, AOA, and FOA MLEs. Using the collection of L

simulated and estimated positions, velocities, angles, frequencies, and variances, the LS

intersection algorithm is implemented as described in Section 2.3.2.1 and the MLE

algorithms are implemented as described in Section 3.3. The LS intersection estimate is

used as the initial estimate (ĝ1 = ĝLS ) for all 3 MLE iterative algorithms and the estimated

parameters are used to estimate the parameter variances. Examples of the estimated SNR,

frequencies, and parameter variances for 39 signal collects are compared to the true values

in Figures 3.12 through 3.16.
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Figure 3.12: Estimated received SNR per signal collect for η1 = 0 dB.
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Figure 3.13: Estimated Doppler frequency per signal collect.
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Figure 3.14: Estimated frequency variance per signal collect.
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Figure 3.15: Estimated azimuth variance per signal collect.
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Figure 3.16: Estimated elevation variance per signal collect.
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The performance of the 4 geolocation algorithms is assessed by comparing the Root

Mean Square Error (RMSE) of independent Monte Carlo Simulation (MCS) trials to the

RMSE of the associated CRLB. An example of 200 MCS geolocation estimates per

algorithm is shown in Figure 3.17. The RMSE of the CRLB on geolocation estimates is

defined as

RMSECRLB =
√

trace {CRLB (ĝ)}. (3.69)

The error of P MCS trials is defined as

eĝ =


‖ĝ1 − g‖

...

‖ĝP − g‖


P×1

. (3.70)

The sample mean of the MCS trials is

µe =
1
P

P∑
i=1

eĝ,i (3.71)

and the sample variance is

σ2
e =

1
P − 1

P∑
i=1

(
eĝ,i − µe

)2
. (3.72)

The RMSE of the MCS trials is

RMSEMCS =

√
σ2

e + µ2
e . (3.73)

3.5.3 Geolocation Simulation Parameters and Emitter Types.

This section defines the parameters of the geolocation simulation. The transmitter

frequency ( fc = 1,315 MHz), number of antenna elements (M = 4), and UCA radius

(r = λc/4) parameters are held constant throughout the simulations. The simulation

parameters listed in Table 3.4 are varied to conduct the sensitivity analysis shown in

Section 4.2 to assess parameter impact on the accuracy of the geolocation algorithms. The

geometry of the analysis scenario is varied through the 11 orbital passes shown in

Figure 3.10 where the distance from transmitter to receiver, relative velocity, angles,
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Figure 3.17: An example of 800 MCS geolocation estimates (200 per algorithm) of the

position of a RF SOI. The RMSE of the MCS estimates is compared to the associated

CRLB.

frequencies, and total pass duration are unique for each pass. The number of signal

collects parameter L is varied to simulate a limited number of signal collects during a pass

where the collects occur sequentially. For example, if L = 10 out of 40 possible signal

collects, the signal is received during the first 25% of the pass. The number of samples per

collect parameter N is varied to simulate different signal durations and sampling rates.

The SNR at the first signal collect parameter η1 is varied to simulate different transmitted

signal and receiver characteristics. The attitude knowledge error parameter σ2
attitude is

varied to simulate the error from the CubeSat ADCS subsystem. The position knowledge

error σ2
position and velocity knowledge error σ2

velocity parameters are varied to simulate the
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error from the CubeSat GPS subsystem. The frequency knowledge error parameter

σ2
frequency is varied to simulate local frequency oscillator drift and carrier frequency offset

errors.

Table 3.4: Geolocation simulation parameters.

Orbital pass p, v

Number of signal collects L

Number of samples per collect N

SNR at the first signal collect η1

Attitude knowledge error σ2
attitude

Position knowledge error σ2
position

Velocity knowledge error σ2
velocity

Frequency knowledge error σ2
frequency

Three types of RF SOI emitters are simulated by varying the total number of collects

per pass, the timing between collects, the number of samples per collect and the received

SNR. A high power spinning radar is simulated as signal collects occurring every 10

seconds with a relatively high SNR and a relatively low number of samples per collect. A

moderate power burst communications emitter is simulated as signal collects occurring

every 30 seconds with a relatively moderate SNR and a relatively moderate number of

samples per collect. A low power continuous communications emitter is simulated as

signal collects occurring every second during the pass with a relatively low SNR and a

relatively high number of samples per collect. The 3 emitter types are summarized in

Table 3.5 and the performance of the geolocation algorithms as a function of emitter type

is compared in Section 4.2.
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Table 3.5: Simulation parameters for three emitter types.

Emitter type
Time between

signal collects
Received SNR Number of samples

Spinning radar 10 s High Low

Burst communications 30 s Moderate Moderate

Continuous communications 1 s Low High
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IV. Results and Analysis

This chapter reports the statistical performance of the single sinusoidal signal

parameter estimators and the geolocation algorithms used in this thesis. Section 4.1

reports the performance of the angle, frequency, and amplitude estimators in terms of the

SNR and number of samples, and defines the performance threshold where the estimator

variance achieves the respective CRLB. Section 4.2 reports the impact of varying the

system parameters on the geolocation accuracy of the geolocation algorithms through a

parameter sensitivity analysis.

4.1 Single Sinusoidal Signal Parameter Estimator Performance

This section evaluates the performance of the angle (MUSIC), frequency (MLE), and

amplitude (MLE) parameter estimators used in this thesis as compared to the respective

CRLBs. The threshold where the estimator variances achieve the CRLB was determined

in terms of the SNR η and number of samples N of the received signal. Since it is assumed

that there is only a single emitter present with no co-channel interference, the received

signal is modeled as a single complex exponential signal consisting of N samples with

normalized frequency f at a SNR of η = σ2
s such that

s [n] = σs exp
[
j2π f n

]
. (4.1)

The signal is phase shifted according to (2.10) with a simulated 4 element UCA with

radius r = λr/4 and true angles of θ = π/4 and φ = π/4

a (θ, φ) =



exp
(

jπ2 sin (θ) cos
(
φ − π

4

))
exp

(
jπ2 sin (θ) cos

(
φ − 3π

4

))
exp

(
jπ2 sin (θ) cos

(
φ − 5π

4

))
exp

(
jπ2 sin (θ) cos

(
φ − 7π

4

))


4×1

. (4.2)
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Each of the 4 phase shifted received signals is corrupted with independent unit power

(σ2
w = 1) complex AWGN such that

xm[n] = am(θ, φ)s[n] + wm[n] (4.3)

and the 4 × N samples of the simulated received signals are contained in

X = a (θ, φ) s + W. (4.4)

The AOA of the received signals are estimated from the estimated spatial covariance

matrix R̂xx = 1
N XXH and a 2D angle grid search over the MUSIC spectrum

[
θ̂, φ̂

]
= arg max

θ,φ

 1

aH (θ, φ) Q̂wQ̂H
w a (θ, φ)

 . (4.5)

The location of the peaks of the MUSIC spectrum are taken as the AOA estimates of the

received signal. The normalized frequency and amplitude are estimated from the DFT of

the first received signal and the SNR is estimated as η̂ = σ̂2
s

f̂ = arg max
f

∣∣∣∣∣ 1
N

DFT [x1]
∣∣∣∣∣2 (4.6)

σ̂2
s =

∣∣∣∣∣ 1
N

DFT [x1]
∣∣∣∣∣2
f = f̂

. (4.7)

The associated angle, frequency, and SNR CRLBs as a function of the SNR and number

of samples of the received signals are

CRLB
(
φ̂
)

=
η−1 + 4

ηN42(π/2)2sin2 (π/4) (π/180)2 (4.8)

CRLB
(

f̂
)

=
6

η
(
N3 − N

)
(2π)2 (4.9)

CRLB (η̂) =
1

2N
. (4.10)

The following figures report the variance of the angle, frequency, and SNR estimators of

noisy signals over a range of N and η values. Each variance is calculated from 3,000

independent MCS trials per N and η value, where N ranges from 10 to 1,000 samples and
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η ranges from -20 to 30 dB. At each grid point, the associated CRLB is calculated for

performance comparison.

The surface plot shown in Figure 4.1 reports the performance of the frequency MLE

compared to the frequency CRLB over the range of N and η values. At low values of N

and η, the MLE variance approaches a value of 12/12 = 8.33 × 10−2, which is the variance

of a uniform random variable ranging from 0 to 1. The values of N and η where the

variance of the frequency MLE approaches the CRLB is defined as the frequency

estimator performance threshold. Cross sections of Figure 4.1 at constant values of

N = 170 samples and η = −4 dB are shown in Figures 4.2 and 4.3 respectively.
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Figure 4.1: Performance of the frequency MLE compared to the frequency CRLB as a

function of SNR and N.
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Figure 4.2: Performance of the frequency MLE compared to the frequency CRLB as a

function of SNR with constant N = 170 samples.
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Figure 4.3: Performance of the frequency MLE compared to the frequency CRLB as a

function of N with constant SNR = −4 dB.
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The surface plot shown in Figure 4.4 reports the performance of the azimuth angle

MUSIC estimator compared to the azimuth angle CRLB over the range of N and η values.

At low values of N and η, the MUSIC variance approaches a value of

3602/12 = 1.08 × 104, which is the variance of a uniform random variable ranging from 0

to 360. The MUSIC variance is less than the angle CRLB at low values of N and η

because the angle CRLB assumes a Gaussian distribution rather than the uniform

distribution. The values of N and η where the variance of the MUSIC angle estimator

approaches the CRLB is defined as the angle estimator performance threshold. Cross

sections of Figure 4.4 at constant values of N = 20 samples and η = −10 dB are shown in

Figures 4.5 and 4.6 respectively.
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Figure 4.4: Performance of the MUSIC azimuth angle estimator compared to the azimuth

angle CRLB as a function of SNR and N.
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Figure 4.5: Performance of the MUSIC azimuth angle estimator compared to the azimuth

angle CRLB as a function of SNR with constant N = 20 samples.
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Figure 4.6: Performance of the MUSIC azimuth angle estimator compared to the azimuth

angle CRLB as a function of N with constant SNR = −10 dB.
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The surface plot shown in Figure 4.7 reports the performance of the SNR MLE

compared to the SNR CRLB over the range of N and η values. The SNR MLE variance is

less than the SNR CRLB at low values of N and η because the SNR CRLB is only valid

for unbiased estimates. The values of N and η where the variance of the SNR MLE

approaches the CRLB is defined as the SNR estimator performance threshold. Cross

sections of Figure 4.7 at constant values of N = 170 samples and η = −10 dB are shown in

Figures 4.8 and 4.9 respectively.
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Figure 4.7: Performance of the SNR MLE compared to the SNR CRLB as a function of

SNR and N.
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Figure 4.8: Performance of the SNR MLE compared to the SNR CRLB as a function of

SNR with constant N = 170 samples.
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Figure 4.9: Performance of the SNR MLE compared to the SNR CRLB as a function of N

with constant SNR = −10 dB.
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The ratios of the estimator variances to the corresponding CRLBs of Figures 4.1, 4.4,

and 4.7 are expressed in dB
(
10log10 [variance/CRLB]

)
and are shown in Figures 4.10

through 4.12 for the frequency, angle, and SNR estimators performance, respectively. The

±1 dB contours of the ratio plots are shown in Figure 4.13 where the value of the

estimator variance is within 1 dB of the associated CRLB. The frequency contour plot is

similar to [41]. As long as the values of N and η are within the region to the right of the

frequency 1 dB threshold contour, the use of Gaussian distributed signal parameter

estimates in the geolocation algorithm simulation with the variances defined by the

associated CRLB as described in Section 3.5.2 is justified.
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Figure 4.10: Ratio of the frequency MLE variance to the frequency CRLB, expressed in

dB, over the range of N and SNR.
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Figure 4.11: Ratio of the MUSIC azimuth angle estimator variance to the angle CRLB,

expressed in dB, over the range of N and SNR.

−20
−10

0
10

20
30

10
1

10
2

10
3

−15

−10

−5

0

5

SNR (dB)N

dB

Figure 4.12: Ratio of the SNR MLE variance to the SNR CRLB, expressed in dB, over the

range of N and SNR.

77



SNR (dB)

N

 

 

−20 −10 0 10 20 30
10

1

10
2

10
3

Frequency 1 dB Threshold
Angle 1 dB Threshold
SNR 1 dB Threshold

Figure 4.13: Contour plot of the frequency, angle, and SNR estimator performance ratios

showing the ±1 dB thresholds.
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4.2 Geolocation Algorithm Performance Sensitivity Analysis

This section reports the impact of various system parameter values on the RMSE of the

4 geolocation algorithms used in this thesis. The system parameters include: the orbital

pass used in the analysis scenario, number of signal collects during the pass, number of

samples per signal collect, SNR at the first signal collect, frequency knowledge error,

attitude knowledge error, position knowledge error, and velocity knowledge error. The

spinning radar, burst communications, and continuous communications emitter types are

used for the sensitivity analysis which is implemented as the geolocation simulation

described in Section 3.5.2. The following default system parameters are used for all 3

emitter types: pass number 7, 5 Hz frequency knowledge error, 0.2 deg attitude

knowledge error, 10 m position knowledge error, and 1 m/s velocity knowledge error. A

sampling frequency of 400 kHz (Ts = 2.5 µs) is used for the simulated frequency

estimates. The system parameter under consideration is varied while the others are held

fixed for each scenario. The RMSE of the 4 geolocation algorithms is calculated from

3,000 independent MCS trials per point and compared to the corresponding CRLB.

The spinning radar emitter considered in Section 4.2.1 is implemented with the

following parameters: 20 dB SNR at the first signal collect, 100 samples per signal

collect, and 10 seconds between signal collects.

The burst communications emitter considered in Section 4.2.2 is implemented with the

following parameters: 10 dB SNR at the first signal collect, 400 samples per signal

collect, and 30 seconds between signal collects.

The continuous communications emitter considered in Section 4.2.3 is implemented

with the following parameters: 0 dB SNR at the first signal collect, 800 samples per signal

collect, and 1 second between signal collects.

The geolocation performance of the AOA/FOA geolocation MLE for the 3 emitter

types is compared in Section 4.2.4.
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4.2.1 Spinning Radar Emitter Sensitivity Analysis.

Figure 4.14 reports the RMSE of the 4 geolocation algorithms and associated CRLBs

for the 11 orbital passes in the analysis scenario. The orbital pass impacts the position,

velocity, and total number of signal collects used by the geolocation algorithms. The AOA

LS intersection has similar performance to the AOA MLE for passes 1-4 due to similar

valued angle measurement variances and relatively low number of total signal collects. As

the number of signal collects increases with a wider range of estimate variances for

weighting of the angle measurements, the AOA MLE has lower RMSE than the AOA LS.

The AOA/FOA MLE geolocation algorithm has a lower RMSE than the other 3

algorithms for all passes.
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Figure 4.14: Sensitivity analysis of varying the orbital passes with the spinning radar

emitter.
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Figure 4.15 reports the RMSE as the total number of signal collects out of a possible 39

total signal collects for pass number 7 is varied. The RMSE of all 4 algorithms decreases

as the number of signal collects increases and begins to level out around 25/39 signal

collects. The AOA/FOA MLE geolocation algorithm has the lowest RMSE throughout.
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Figure 4.15: Sensitivity analysis of varying the number of collects with the spinning radar

emitter.

81



Figure 4.16 reports the RMSE as the number of samples per signal collect is varied.

The RMSE decreases as the number of samples per signal collect increases until the

frequency, attitude, position, and velocity knowledge errors determine the performance of

the algorithms, at which point the RMSE begins to level out. The RMSE of the FOA MLE

geolocation algorithm decreases at a greater rate due to the 1/N3 term in frequency CRLB.

The AOA/FOA MLE geolocation algorithm has the lowest RMSE throughout.
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Figure 4.16: Sensitivity analysis of varying the number of samples per signal collect with

the spinning radar emitter.

82



Figure 4.17 reports the RMSE as the SNR at the first signal collect is varied. The

RMSE decreases as the SNR increases until the frequency, attitude, position, and velocity

knowledge errors determine the performance of the algorithms, at which point the RMSE

begins to level out. The AOA/FOA MLE geolocation algorithm has the lowest RMSE

throughout.
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Figure 4.17: Sensitivity analysis of varying the SNR at the first signal collect with the

spinning radar emitter.

83



Figure 4.18 reports the RMSE as the frequency knowledge error standard deviation is

varied. The RMSE of the AOA LS and AOA MLE are constant since frequency estimates

are not included in those algorithms, while the RMSE increases for the FOA MLE and

AOA/FOA MLE algorithms. The AOA/FOA MLE RMSE converges to the AOA MLE

RMSE since the variances on the angle estimates are lower than the variances on the

frequency estimates.
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Figure 4.18: Sensitivity analysis of varying the frequency knowledge error standard

deviation with the spinning radar emitter.

84



Figure 4.19 reports the RMSE as the attitude knowledge error standard deviation is

varied. The RMSE of the FOA MLE is constant since angle estimates are not included in

that algorithm, while the RMSE increases for the AOA LS, AOA MLE, and AOA/FOA

algorithms. The AOA/FOA MLE RMSE converges to FOA MLE RMSE since the

variance on the frequency estimates are lower than the variance on the angle estimates.
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Figure 4.19: Sensitivity analysis of varying the attitude knowledge error standard deviation

with the spinning radar emitter.
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Figure 4.20 reports the RMSE as the position knowledge error standard deviation is

varied. The RMSE is relatively unaffected for all 4 algorithms until 200 m position error,

then the RMSE of the FOA MLE begins to increase. The CRLBs used do not include

position errors and remain constant. The AOA/FOA MLE geolocation algorithm has the

lowest RMSE throughout.
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Figure 4.20: Sensitivity analysis of varying the position knowledge error standard deviation

with the spinning radar emitter.
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Figure 4.21 reports the RMSE as the velocity knowledge error standard deviation is

varied. The RMSE increases sharply for the FOA MLE and AOA/FOA MLE algorithms.

The RMSE of the AOA LS and AOA MLE algorithms is constant since they do not depend

on the velocity of the CubeSat. The CRLBs used do not include velocity errors and remain

constant. In the case of relatively large velocity knowledge errors, the AOA LS and AOA

MLE algorithms have lower RMSE than the FOA MLE and AOA/FOA MLE algorithms.
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Figure 4.21: Sensitivity analysis of varying the velocity knowledge error standard deviation

with the spinning radar emitter.
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4.2.2 Burst Communications Emitter Sensitivity Analysis.

Simulation results of the sensitivity analysis with the burst communications emitter are

reported in Figures 4.22 through 4.29. The parameter sensitivities observed with the burst

communications emitter are similar to the spinning radar emitter. The AOA/FOA MLE

geolocation algorithm consistently has a lower RMSE than the other 3 geolocation

algorithms with the exception of high velocity knowledge errors.
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Figure 4.22: Orbital pass variation with the burst emitter.
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Figure 4.23: Number of collects variation with the burst emitter.
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Figure 4.24: Number of samples per collect variation with the burst emitter.
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Figure 4.25: SNR at the first signal collect variation with the burst emitter.
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Figure 4.26: Frequency knowledge error variation with the burst emitter.
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Figure 4.27: Attitude knowledge error variation with the burst emitter.
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Figure 4.28: Position knowledge error variation with the burst emitter.
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Figure 4.29: Velocity knowledge error variation with the burst emitter.
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4.2.3 Continuous Communications Emitter Sensitivity Analysis.

Simulation results of the sensitivity analysis with the continuous communications

emitter are reported in Figures 4.30 through 4.37. The parameter sensitivities observed

with the continuous communications emitter are similar to the spinning radar and burst

communications emitters. The AOA/FOA MLE geolocation algorithm consistently has a

lower RMSE than the other 3 geolocation algorithms with the exception of high velocity

knowledge errors.
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Figure 4.30: Orbital pass variation with the continuous emitter.
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Figure 4.31: Number of collects variation with the continuous emitter.
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Figure 4.32: Number of samples per collect variation with the continuous emitter.
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Figure 4.33: SNR at the first signal collect variation with the continuous emitter.
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Figure 4.34: Frequency knowledge error variation with the continuous emitter.
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Figure 4.35: Attitude knowledge error variation with the continuous emitter.
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Figure 4.36: Position knowledge error variation with the continuous emitter.
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Figure 4.37: Velocity knowledge error variation with the continuous emitter.
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4.2.4 Geolocation Accuracy Comparison of Emitter Types.

Since the AOA/FOA MLE geolocation algorithm has been shown to consistently have

the lowest RMSE of the 4 geolocation algorithms, the performance of the AOA/FOA

MLE for the 3 emitter types is compared in Figures 4.38 through 4.45.
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Figure 4.38: AOA/FOA MLE emitter comparison for orbital pass variation.
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Figure 4.39: AOA/FOA MLE emitter comparison for the percent of collects along pass 7.
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Figure 4.40: AOA/FOA MLE emitter comparison for samples per collect variation.

99



−5 0 5 10 15 20 25 30
10

2

10
3

10
4

10
5

SNR at First Collect (dB)

R
M

S
E

 (
m

)

 

 
Burst MCS
Burst CRLB
Radar MCS
Radar CRLB
Continuous MCS
Continuous CRLB

Figure 4.41: AOA/FOA MLE emitter comparison for SNR at first collect variation.

0 100 200 300 400 500
10

2

10
3

10
4

Frequency Error (Hz)

R
M

SE
 (

m
)

 

 
Burst MCS
Burst CRLB
Radar MCS
Radar CRLB
Continuous MCS
Continuous CRLB

Figure 4.42: AOA/FOA MLE emitter comparison for frequency knowledge error variation.
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Figure 4.43: AOA/FOA MLE emitter comparison for attitude knowledge error variation.
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Figure 4.44: AOA/FOA MLE emitter comparison for position knowledge error variation.
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Figure 4.45: AOA/FOA MLE emitter comparison for velocity knowledge error variation.
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V. Conclusion

This thesis presented four geolocation methods (LS, AOA, FOA, and AOA/FOA) to

estimate the position of a stationary RF emitter from AOA and/or FOA measurements at a

single moving receiver platform. A single emitter with no co-channel interference was

assumed to simplify the analysis. The MUSIC algorithm was used for AOA

measurements and the frequency MLE was used for FOA measurements. The analysis

scenario considered consisted of a single 6U CubeSat receiver platform in LEO receiving

RF signals from a terrestrial emitter. A simulation framework was developed to validate

the statistical performance of the geolocation algorithms against the respective CRLBs

and to conduct a system parameter sensitivity analysis.

5.1 Overall Research Conclusions

From the system parameter sensitivity analysis results reported in Chapter IV, the

AOA/FOA MLE geolocation algorithm consistently has the lowest RMSE of the four

geolocation algorithms analyzed in this thesis. The increased performance of the

AOA/FOA algorithm is attributed to the greater number of measurements available per

signal collect (angles and frequency estimates) and the intersection of the AOA and FOA

covariance ellipsoids. As observed in Figures 3.9 and 3.17, the AOA/FOA covariance

ellipsoid is the intersection of the AOA and FOA covariance ellipsoids. If an AOA payload

is present on a single moving receiver platform, the implementation cost of incorporating

FOA measurements is relatively low for an increase in geolocation accuracy.

Conducting the system parameter sensitivity analysis in terms of the SNR and number

of samples, rather than a specific received signal, and parameter knowledge error provides

intuition on the dependence of the geolocation algorithms performance on the various

system parameters. In general, the geolocation accuracy increases as the SNR, number of
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collects, and number of samples per collect increase. The geolocation accuracy decreases

as the amount of frequency, attitude, position, and velocity knowledge error increases. At

high values of SNR and number of samples per collect, the geolocation accuracy of all

four algorithms is determined by the parameter knowledge errors. At high values of

attitude and frequency knowledge error, the AOA/FOA algorithm accuracy approaches the

AOA or FOA accuracy due to using the individual measurement variances as weighting

factors in the MLE geolocation algorithms.

5.2 Recommendations for Future Work

Incorporating multiple receiver platforms into the simulation framework would allow

for the analysis of additional geolocation algorithms such as time difference of arrival,

frequency difference of arrival, and direct position determination. The geolocation CRLBs

and MLEs can be revised to include the position and velocity knowledge errors.

Additional analysis fidelity can be added by incorporating implementation specific

considerations such as: mutual coupling effects and variable gain pattern of the receiver

antenna array; variable gain pattern of the transmit antenna; phase coherence and noise

characteristics of the RF receivers; and characteristics of a specific RF emitter. Methods

for the data association and segregation of multiple emitters was not addressed in this

thesis and the co-channel interference will decrease the performance of signal parameter

estimates. Consideration of a moving emitter encourages time varying, target tracking,

and motion analysis. Incorporation of a surface of the Earth constraint with terrain data is

also recommended for future research.
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